MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance st_robot
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.00000000 (ANTIGONE) 0.00000000 (BARON) 0.00000000 (COUENNE) 0.00000000 (GUROBI) 0.00000000 (LINDO) 0.00000000 (SCIP) |
Referencesⓘ | Tawarmalani, M and Sahinidis, N V, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, 2002. Tsai, L-W and Morgan, A P, Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods, Journal of Mechanics, Transmissions, and Automation in Design}", year = "1985, 107:2, 189-200. |
Sourceⓘ | BARON book instance input/robot |
Added to libraryⓘ | 03 Sep 2002 |
Problem typeⓘ | QCP |
#Variablesⓘ | 8 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 8 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | constant |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 0 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 8 |
#Linear Constraintsⓘ | 1 |
#Quadratic Constraintsⓘ | 7 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 24 |
#Nonlinear Nonzeros in Jacobianⓘ | 16 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 14 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 8 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 1.6 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.6370e-03 |
Maximal coefficientⓘ | 1.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 9 9 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 9 9 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 25 9 16 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,objvar; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9; e1.. 0.004731*x1*x3 - 0.1238*x1 - 0.3578*x2*x3 - 0.001637*x2 - 0.9338*x4 + x7 =E= 0.3571; e2.. 0.2238*x1*x3 + 0.2638*x1 + 0.7623*x2*x3 - 0.07745*x2 - 0.6734*x4 - x7 =E= 0.6022; e3.. x6*x8 + 0.3578*x1 + 0.004731*x2 =E= 0; e4.. - 0.7623*x1 + 0.2238*x2 =E= -0.3461; e5.. sqr(x1) + sqr(x2) =E= 1; e6.. sqr(x3) + sqr(x4) =E= 1; e7.. sqr(x5) + sqr(x6) =E= 1; e8.. sqr(x7) + sqr(x8) =E= 1; e9.. objvar =E= 0; * set non-default bounds x1.lo = -1; x1.up = 1; x2.lo = -1; x2.up = 1; x3.lo = -1; x3.up = 1; x4.lo = -1; x4.up = 1; x5.lo = -1; x5.up = 1; x6.lo = -1; x6.up = 1; x7.lo = -1; x7.up = 1; x8.lo = -1; x8.up = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91