MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance supplychain
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 2260.25656300 (ANTIGONE) 2260.25656300 (BARON) 2260.25656300 (COUENNE) 2260.25656200 (GUROBI) 2260.25656300 (LINDO) 2260.25656300 (SCIP) 947.60000000 (SHOT) |
Referencesⓘ | You, Fengqi and Grossmann, I E, Mixed-Integer Nonlinear Programming Models and Algorithms for Supply Chain Design with Stochastic Inventory Management, 2009. |
Sourceⓘ | Model_P2.gms from minlp.org model 30 |
Applicationⓘ | Supply Chain Design with Stochastic Inventory Management |
Added to libraryⓘ | 24 Sep 2013 |
Problem typeⓘ | MBQCP |
#Variablesⓘ | 27 |
#Binary Variablesⓘ | 3 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 6 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 27 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 30 |
#Linear Constraintsⓘ | 24 |
#Quadratic Constraintsⓘ | 6 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | concave |
#Nonzeros in Jacobianⓘ | 96 |
#Nonlinear Nonzeros in Jacobianⓘ | 6 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 6 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 6 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 1 |
Average blocksize in Hessian of Lagrangianⓘ | 1.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.3520e-01 |
Maximal coefficientⓘ | 4.4800e+04 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 31 7 0 24 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 28 25 3 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 124 118 6 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,b25,b26,b27,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24; Binary Variables b25,b26,b27; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31; e1.. - 66.5*x1 - 522.5*x2 - 750.5*x3 - 125.6*x4 - 612.3*x5 - 628*x6 - 69*x7 - 32.2*x8 - 151.8*x9 - 655.2*x10 - 175.5*x11 - 468*x12 - 330*x13 - 375*x14 - 75*x15 - 1728*x16 - 1190.4*x17 - 172.8*x18 - 24.5108139399735*x19 - 24.5071418162135*x20 - 24.5120378589786*x21 - 0.2352*x22 - 0.2352*x23 - 0.2352*x24 - 100*b25 - 100*b26 - 100*b27 + objvar =E= 0; e2.. x1 + x2 + x3 =E= 1; e3.. x4 + x5 + x6 =E= 1; e4.. x7 + x8 + x9 =E= 1; e5.. x10 + x11 + x12 =E= 1; e6.. x13 + x14 + x15 =E= 1; e7.. x16 + x17 + x18 =E= 1; e8.. x1 - b25 =L= 0; e9.. x2 - b26 =L= 0; e10.. x3 - b27 =L= 0; e11.. x4 - b25 =L= 0; e12.. x5 - b26 =L= 0; e13.. x6 - b27 =L= 0; e14.. x7 - b25 =L= 0; e15.. x8 - b26 =L= 0; e16.. x9 - b27 =L= 0; e17.. x10 - b25 =L= 0; e18.. x11 - b26 =L= 0; e19.. x12 - b27 =L= 0; e20.. x13 - b25 =L= 0; e21.. x14 - b26 =L= 0; e22.. x15 - b27 =L= 0; e23.. x16 - b25 =L= 0; e24.. x17 - b26 =L= 0; e25.. x18 - b27 =L= 0; e26.. -sqr(x19) + 95*x1 + 157*x4 + 46*x7 + 234*x10 + 75*x13 + 192*x16 =L= 0; e27.. -sqr(x20) + 95*x2 + 157*x5 + 46*x8 + 234*x11 + 75*x14 + 192*x17 =L= 0; e28.. -sqr(x21) + 95*x3 + 157*x6 + 46*x9 + 234*x12 + 75*x15 + 192*x18 =L= 0; e29.. -sqr(x22) + 6300*x1 + 17500*x4 + 4375*x7 + 44800*x10 + 4375*x13 + 44800*x16 =L= 0; e30.. -sqr(x23) + 6300*x2 + 17500*x5 + 4375*x8 + 44800*x11 + 4375*x14 + 44800*x17 =L= 0; e31.. -sqr(x24) + 6300*x3 + 17500*x6 + 4375*x9 + 44800*x12 + 4375*x15 + 44800*x18 =L= 0; * set non-default bounds x1.up = 1; x2.up = 1; x3.up = 1; x4.up = 1; x5.up = 1; x6.up = 1; x7.up = 1; x8.up = 1; x9.up = 1; x10.up = 1; x11.up = 1; x12.up = 1; x13.up = 1; x14.up = 1; x15.up = 1; x16.up = 1; x17.up = 1; x18.up = 1; x19.up = 28.2665880502051; x20.up = 28.2665880502051; x21.up = 28.2665880502051; x22.up = 349.499642346026; x23.up = 349.499642346026; x24.up = 349.499642346026; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91