MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tls6
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 7.20000000 (ALPHAECP) 9.92916231 (ANTIGONE) 9.60000000 (BARON) 7.48599040 (BONMIN) 1.14218512 (COUENNE) 15.30000000 (GUROBI) 5.49616714 (LINDO) 10.25611161 (SCIP) 10.58219716 (SHOT) |
Referencesⓘ | Harjunkoski, Iiro, Westerlund, Tapio, Pörn, Ray, and Skrifvars, Hans, Different Transformations for Solving Non-Convex Trim Loss Problems by MINLP, European Journal of Operational Research, 105:3, 1998, 594-603. |
Sourceⓘ | MacMINLP model trimlon.mod with trimloss2.dat |
Applicationⓘ | Trim loss minimization problem |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MINLP |
#Variablesⓘ | 215 |
#Binary Variablesⓘ | 173 |
#Integer Variablesⓘ | 6 |
#Nonlinear Variablesⓘ | 42 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 6 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 53 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 120 |
#Linear Constraintsⓘ | 114 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 6 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 1316 |
#Nonlinear Nonzeros in Jacobianⓘ | 72 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 114 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 42 |
#Blocks in Hessian of Lagrangianⓘ | 6 |
Minimal blocksize in Hessian of Lagrangianⓘ | 7 |
Maximal blocksize in Hessian of Lagrangianⓘ | 7 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-01 |
Maximal coefficientⓘ | 2.1500e+03 |
Infeasibility of initial pointⓘ | 2100 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 121 43 0 78 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 216 37 173 6 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 1370 1298 72 0 * * Solve m using MINLP minimizing objvar; Variables b1,b2,b3,b4,b5,b6,i7,i8,i9,i10,i11,i12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,b49,b50,b51,b52,b53 ,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70 ,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87 ,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103 ,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115,b116 ,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128,b129 ,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141,b142 ,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154,b155 ,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167,b168 ,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180,b181 ,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193,b194 ,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206,b207 ,b208,b209,b210,b211,b212,b213,b214,b215,objvar; Binary Variables b1,b2,b3,b4,b5,b6,b49,b50,b51,b52,b53,b54,b55,b56,b57,b58 ,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70,b71,b72,b73,b74,b75 ,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86,b87,b88,b89,b90,b91,b92 ,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102,b103,b104,b105,b106,b107 ,b108,b109,b110,b111,b112,b113,b114,b115,b116,b117,b118,b119,b120 ,b121,b122,b123,b124,b125,b126,b127,b128,b129,b130,b131,b132,b133 ,b134,b135,b136,b137,b138,b139,b140,b141,b142,b143,b144,b145,b146 ,b147,b148,b149,b150,b151,b152,b153,b154,b155,b156,b157,b158,b159 ,b160,b161,b162,b163,b164,b165,b166,b167,b168,b169,b170,b171,b172 ,b173,b174,b175,b176,b177,b178,b179,b180,b181,b182,b183,b184,b185 ,b186,b187,b188,b189,b190,b191,b192,b193,b194,b195,b196,b197,b198 ,b199,b200,b201,b202,b203,b204,b205,b206,b207,b208,b209,b210,b211 ,b212,b213,b214,b215; Integer Variables i7,i8,i9,i10,i11,i12; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121; e1.. - 0.1*b1 - 0.2*b2 - 0.3*b3 - 0.4*b4 - 0.5*b5 - 0.6*b6 - b49 - 2*b50 - 3*b51 - 4*b52 - 5*b53 - 6*b54 - 7*b55 - 8*b56 - 9*b57 - 10*b58 - 11*b59 - 12*b60 - 13*b61 - 14*b62 - b63 - 2*b64 - 3*b65 - 4*b66 - 5*b67 - 6*b68 - 7*b69 - 8*b70 - 9*b71 - 10*b72 - 11*b73 - 12*b74 - b75 - 2*b76 - 3*b77 - 4*b78 - 5*b79 - 6*b80 - 7*b81 - 8*b82 - b83 - 2*b84 - 3*b85 - 4*b86 - 5*b87 - 6*b88 - 7*b89 - b90 - 2*b91 - 3*b92 - 4*b93 - b94 - 2*b95 + objvar =E= 0; e2.. 330*b96 + 660*b97 + 360*b108 + 720*b109 + 1080*b110 + 380*b126 + 760*b127 + 1140*b128 + 430*b144 + 860*b145 + 1290*b146 + 1720*b147 + 2150*b148 + 490*b174 + 980*b175 + 1470*b176 + 530*b192 + 1060*b193 + 1590*b194 + 2120*b195 =L= 2200; e3.. 330*b98 + 660*b99 + 360*b111 + 720*b112 + 1080*b113 + 380*b129 + 760*b130 + 1140*b131 + 430*b149 + 860*b150 + 1290*b151 + 1720*b152 + 2150*b153 + 490*b177 + 980*b178 + 1470*b179 + 530*b196 + 1060*b197 + 1590*b198 + 2120*b199 =L= 2200; e4.. 330*b100 + 660*b101 + 360*b114 + 720*b115 + 1080*b116 + 380*b132 + 760*b133 + 1140*b134 + 430*b154 + 860*b155 + 1290*b156 + 1720*b157 + 2150*b158 + 490*b180 + 980*b181 + 1470*b182 + 530*b200 + 1060*b201 + 1590*b202 + 2120*b203 =L= 2200; e5.. 330*b102 + 660*b103 + 360*b117 + 720*b118 + 1080*b119 + 380*b135 + 760*b136 + 1140*b137 + 430*b159 + 860*b160 + 1290*b161 + 1720*b162 + 2150*b163 + 490*b183 + 980*b184 + 1470*b185 + 530*b204 + 1060*b205 + 1590*b206 + 2120*b207 =L= 2200; e6.. 330*b104 + 660*b105 + 360*b120 + 720*b121 + 1080*b122 + 380*b138 + 760*b139 + 1140*b140 + 430*b164 + 860*b165 + 1290*b166 + 1720*b167 + 2150*b168 + 490*b186 + 980*b187 + 1470*b188 + 530*b208 + 1060*b209 + 1590*b210 + 2120*b211 =L= 2200; e7.. 330*b106 + 660*b107 + 360*b123 + 720*b124 + 1080*b125 + 380*b141 + 760*b142 + 1140*b143 + 430*b169 + 860*b170 + 1290*b171 + 1720*b172 + 2150*b173 + 490*b189 + 980*b190 + 1470*b191 + 530*b212 + 1060*b213 + 1590*b214 + 2120*b215 =L= 2200; e8.. - 330*b96 - 660*b97 - 360*b108 - 720*b109 - 1080*b110 - 380*b126 - 760*b127 - 1140*b128 - 430*b144 - 860*b145 - 1290*b146 - 1720*b147 - 2150*b148 - 490*b174 - 980*b175 - 1470*b176 - 530*b192 - 1060*b193 - 1590*b194 - 2120*b195 =L= -2100; e9.. - 330*b98 - 660*b99 - 360*b111 - 720*b112 - 1080*b113 - 380*b129 - 760*b130 - 1140*b131 - 430*b149 - 860*b150 - 1290*b151 - 1720*b152 - 2150*b153 - 490*b177 - 980*b178 - 1470*b179 - 530*b196 - 1060*b197 - 1590*b198 - 2120*b199 =L= -2100; e10.. - 330*b100 - 660*b101 - 360*b114 - 720*b115 - 1080*b116 - 380*b132 - 760*b133 - 1140*b134 - 430*b154 - 860*b155 - 1290*b156 - 1720*b157 - 2150*b158 - 490*b180 - 980*b181 - 1470*b182 - 530*b200 - 1060*b201 - 1590*b202 - 2120*b203 =L= -2100; e11.. - 330*b102 - 660*b103 - 360*b117 - 720*b118 - 1080*b119 - 380*b135 - 760*b136 - 1140*b137 - 430*b159 - 860*b160 - 1290*b161 - 1720*b162 - 2150*b163 - 490*b183 - 980*b184 - 1470*b185 - 530*b204 - 1060*b205 - 1590*b206 - 2120*b207 =L= -2100; e12.. - 330*b104 - 660*b105 - 360*b120 - 720*b121 - 1080*b122 - 380*b138 - 760*b139 - 1140*b140 - 430*b164 - 860*b165 - 1290*b166 - 1720*b167 - 2150*b168 - 490*b186 - 980*b187 - 1470*b188 - 530*b208 - 1060*b209 - 1590*b210 - 2120*b211 =L= -2100; e13.. - 330*b106 - 660*b107 - 360*b123 - 720*b124 - 1080*b125 - 380*b141 - 760*b142 - 1140*b143 - 430*b169 - 860*b170 - 1290*b171 - 1720*b172 - 2150*b173 - 490*b189 - 980*b190 - 1470*b191 - 530*b212 - 1060*b213 - 1590*b214 - 2120*b215 =L= -2100; e14.. b96 + 2*b97 + b108 + 2*b109 + 3*b110 + b126 + 2*b127 + 3*b128 + b144 + 2*b145 + 3*b146 + 4*b147 + 5*b148 + b174 + 2*b175 + 3*b176 + b192 + 2*b193 + 3*b194 + 4*b195 =L= 5; e15.. b98 + 2*b99 + b111 + 2*b112 + 3*b113 + b129 + 2*b130 + 3*b131 + b149 + 2*b150 + 3*b151 + 4*b152 + 5*b153 + b177 + 2*b178 + 3*b179 + b196 + 2*b197 + 3*b198 + 4*b199 =L= 5; e16.. b100 + 2*b101 + b114 + 2*b115 + 3*b116 + b132 + 2*b133 + 3*b134 + b154 + 2*b155 + 3*b156 + 4*b157 + 5*b158 + b180 + 2*b181 + 3*b182 + b200 + 2*b201 + 3*b202 + 4*b203 =L= 5; e17.. b102 + 2*b103 + b117 + 2*b118 + 3*b119 + b135 + 2*b136 + 3*b137 + b159 + 2*b160 + 3*b161 + 4*b162 + 5*b163 + b183 + 2*b184 + 3*b185 + b204 + 2*b205 + 3*b206 + 4*b207 =L= 5; e18.. b104 + 2*b105 + b120 + 2*b121 + 3*b122 + b138 + 2*b139 + 3*b140 + b164 + 2*b165 + 3*b166 + 4*b167 + 5*b168 + b186 + 2*b187 + 3*b188 + b208 + 2*b209 + 3*b210 + 4*b211 =L= 5; e19.. b106 + 2*b107 + b123 + 2*b124 + 3*b125 + b141 + 2*b142 + 3*b143 + b169 + 2*b170 + 3*b171 + 4*b172 + 5*b173 + b189 + 2*b190 + 3*b191 + b212 + 2*b213 + 3*b214 + 4*b215 =L= 5; e20.. b1 - b49 - 2*b50 - 3*b51 - 4*b52 - 5*b53 - 6*b54 - 7*b55 - 8*b56 - 9*b57 - 10*b58 - 11*b59 - 12*b60 - 13*b61 - 14*b62 =L= 0; e21.. b2 - b63 - 2*b64 - 3*b65 - 4*b66 - 5*b67 - 6*b68 - 7*b69 - 8*b70 - 9*b71 - 10*b72 - 11*b73 - 12*b74 =L= 0; e22.. b3 - b75 - 2*b76 - 3*b77 - 4*b78 - 5*b79 - 6*b80 - 7*b81 - 8*b82 =L= 0 ; e23.. b4 - b83 - 2*b84 - 3*b85 - 4*b86 - 5*b87 - 6*b88 - 7*b89 =L= 0; e24.. b5 - b90 - 2*b91 - 3*b92 - 4*b93 =L= 0; e25.. b6 - b94 - 2*b95 =L= 0; e26.. - 14*b1 + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 =L= 0; e27.. - 12*b2 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 =L= 0; e28.. - 8*b3 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 =L= 0; e29.. - 7*b4 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 =L= 0; e30.. - 4*b5 + b90 + 2*b91 + 3*b92 + 4*b93 =L= 0; e31.. - 2*b6 + b94 + 2*b95 =L= 0; e32.. i7 - 3*b49 - 8*b50 - 15*b51 - 24*b52 - 35*b53 - 48*b54 - 63*b55 - 80*b56 - 99*b57 - 120*b58 - 143*b59 - 168*b60 - 195*b61 - 224*b62 =E= 1; e33.. i8 - 3*b63 - 8*b64 - 15*b65 - 24*b66 - 35*b67 - 48*b68 - 63*b69 - 80*b70 - 99*b71 - 120*b72 - 143*b73 - 168*b74 =E= 1; e34.. i9 - 3*b75 - 8*b76 - 15*b77 - 24*b78 - 35*b79 - 48*b80 - 63*b81 - 80*b82 =E= 1; e35.. i10 - 3*b83 - 8*b84 - 15*b85 - 24*b86 - 35*b87 - 48*b88 - 63*b89 =E= 1 ; e36.. i11 - 3*b90 - 8*b91 - 15*b92 - 24*b93 =E= 1; e37.. i12 - 3*b94 - 8*b95 =E= 1; e38.. b49 + b50 + b51 + b52 + b53 + b54 + b55 + b56 + b57 + b58 + b59 + b60 + b61 + b62 =L= 1; e39.. b63 + b64 + b65 + b66 + b67 + b68 + b69 + b70 + b71 + b72 + b73 + b74 =L= 1; e40.. b75 + b76 + b77 + b78 + b79 + b80 + b81 + b82 =L= 1; e41.. b83 + b84 + b85 + b86 + b87 + b88 + b89 =L= 1; e42.. b90 + b91 + b92 + b93 =L= 1; e43.. b94 + b95 =L= 1; e44.. x13 - 3*b96 - 8*b97 =E= 1; e45.. x14 - 3*b98 - 8*b99 =E= 1; e46.. x15 - 3*b100 - 8*b101 =E= 1; e47.. x16 - 3*b102 - 8*b103 =E= 1; e48.. x17 - 3*b104 - 8*b105 =E= 1; e49.. x18 - 3*b106 - 8*b107 =E= 1; e50.. x19 - 3*b108 - 8*b109 - 15*b110 =E= 1; e51.. x20 - 3*b111 - 8*b112 - 15*b113 =E= 1; e52.. x21 - 3*b114 - 8*b115 - 15*b116 =E= 1; e53.. x22 - 3*b117 - 8*b118 - 15*b119 =E= 1; e54.. x23 - 3*b120 - 8*b121 - 15*b122 =E= 1; e55.. x24 - 3*b123 - 8*b124 - 15*b125 =E= 1; e56.. x25 - 3*b126 - 8*b127 - 15*b128 =E= 1; e57.. x26 - 3*b129 - 8*b130 - 15*b131 =E= 1; e58.. x27 - 3*b132 - 8*b133 - 15*b134 =E= 1; e59.. x28 - 3*b135 - 8*b136 - 15*b137 =E= 1; e60.. x29 - 3*b138 - 8*b139 - 15*b140 =E= 1; e61.. x30 - 3*b141 - 8*b142 - 15*b143 =E= 1; e62.. x31 - 3*b144 - 8*b145 - 15*b146 - 24*b147 - 35*b148 =E= 1; e63.. x32 - 3*b149 - 8*b150 - 15*b151 - 24*b152 - 35*b153 =E= 1; e64.. x33 - 3*b154 - 8*b155 - 15*b156 - 24*b157 - 35*b158 =E= 1; e65.. x34 - 3*b159 - 8*b160 - 15*b161 - 24*b162 - 35*b163 =E= 1; e66.. x35 - 3*b164 - 8*b165 - 15*b166 - 24*b167 - 35*b168 =E= 1; e67.. x36 - 3*b169 - 8*b170 - 15*b171 - 24*b172 - 35*b173 =E= 1; e68.. x37 - 3*b174 - 8*b175 - 15*b176 =E= 1; e69.. x38 - 3*b177 - 8*b178 - 15*b179 =E= 1; e70.. x39 - 3*b180 - 8*b181 - 15*b182 =E= 1; e71.. x40 - 3*b183 - 8*b184 - 15*b185 =E= 1; e72.. x41 - 3*b186 - 8*b187 - 15*b188 =E= 1; e73.. x42 - 3*b189 - 8*b190 - 15*b191 =E= 1; e74.. x43 - 3*b192 - 8*b193 - 15*b194 - 24*b195 =E= 1; e75.. x44 - 3*b196 - 8*b197 - 15*b198 - 24*b199 =E= 1; e76.. x45 - 3*b200 - 8*b201 - 15*b202 - 24*b203 =E= 1; e77.. x46 - 3*b204 - 8*b205 - 15*b206 - 24*b207 =E= 1; e78.. x47 - 3*b208 - 8*b209 - 15*b210 - 24*b211 =E= 1; e79.. x48 - 3*b212 - 8*b213 - 15*b214 - 24*b215 =E= 1; e80.. b96 + b97 =L= 1; e81.. b98 + b99 =L= 1; e82.. b100 + b101 =L= 1; e83.. b102 + b103 =L= 1; e84.. b104 + b105 =L= 1; e85.. b106 + b107 =L= 1; e86.. b108 + b109 + b110 =L= 1; e87.. b111 + b112 + b113 =L= 1; e88.. b114 + b115 + b116 =L= 1; e89.. b117 + b118 + b119 =L= 1; e90.. b120 + b121 + b122 =L= 1; e91.. b123 + b124 + b125 =L= 1; e92.. b126 + b127 + b128 =L= 1; e93.. b129 + b130 + b131 =L= 1; e94.. b132 + b133 + b134 =L= 1; e95.. b135 + b136 + b137 =L= 1; e96.. b138 + b139 + b140 =L= 1; e97.. b141 + b142 + b143 =L= 1; e98.. b144 + b145 + b146 + b147 + b148 =L= 1; e99.. b149 + b150 + b151 + b152 + b153 =L= 1; e100.. b154 + b155 + b156 + b157 + b158 =L= 1; e101.. b159 + b160 + b161 + b162 + b163 =L= 1; e102.. b164 + b165 + b166 + b167 + b168 =L= 1; e103.. b169 + b170 + b171 + b172 + b173 =L= 1; e104.. b174 + b175 + b176 =L= 1; e105.. b177 + b178 + b179 =L= 1; e106.. b180 + b181 + b182 =L= 1; e107.. b183 + b184 + b185 =L= 1; e108.. b186 + b187 + b188 =L= 1; e109.. b189 + b190 + b191 =L= 1; e110.. b192 + b193 + b194 + b195 =L= 1; e111.. b196 + b197 + b198 + b199 =L= 1; e112.. b200 + b201 + b202 + b203 =L= 1; e113.. b204 + b205 + b206 + b207 =L= 1; e114.. b208 + b209 + b210 + b211 =L= 1; e115.. b212 + b213 + b214 + b215 =L= 1; e116.. -(sqrt(i7*x13) + sqrt(i8*x14) + sqrt(i9*x15) + sqrt(i10*x16) + sqrt(i11* x17) + sqrt(i12*x18)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b96 + 2*b97 + b98 + 2*b99 + b100 + 2*b101 + b102 + 2*b103 + b104 + 2*b105 + b106 + 2*b107 =L= -14; e117.. -(sqrt(i7*x19) + sqrt(i8*x20) + sqrt(i9*x21) + sqrt(i10*x22) + sqrt(i11* x23) + sqrt(i12*x24)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b108 + 2*b109 + 3*b110 + b111 + 2*b112 + 3*b113 + b114 + 2*b115 + 3*b116 + b117 + 2*b118 + 3*b119 + b120 + 2*b121 + 3*b122 + b123 + 2*b124 + 3*b125 =L= -22; e118.. -(sqrt(i7*x25) + sqrt(i8*x26) + sqrt(i9*x27) + sqrt(i10*x28) + sqrt(i11* x29) + sqrt(i12*x30)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b126 + 2*b127 + 3*b128 + b129 + 2*b130 + 3*b131 + b132 + 2*b133 + 3*b134 + b135 + 2*b136 + 3*b137 + b138 + 2*b139 + 3*b140 + b141 + 2*b142 + 3*b143 =L= -18; e119.. -(sqrt(i7*x31) + sqrt(i8*x32) + sqrt(i9*x33) + sqrt(i10*x34) + sqrt(i11* x35) + sqrt(i12*x36)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b144 + 2*b145 + 3*b146 + 4*b147 + 5*b148 + b149 + 2*b150 + 3*b151 + 4*b152 + 5*b153 + b154 + 2*b155 + 3*b156 + 4*b157 + 5*b158 + b159 + 2*b160 + 3*b161 + 4*b162 + 5*b163 + b164 + 2*b165 + 3*b166 + 4*b167 + 5*b168 + b169 + 2*b170 + 3*b171 + 4*b172 + 5*b173 =L= -13; e120.. -(sqrt(i7*x37) + sqrt(i8*x38) + sqrt(i9*x39) + sqrt(i10*x40) + sqrt(i11* x41) + sqrt(i12*x42)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b174 + 2*b175 + 3*b176 + b177 + 2*b178 + 3*b179 + b180 + 2*b181 + 3*b182 + b183 + 2*b184 + 3*b185 + b186 + 2*b187 + 3*b188 + b189 + 2*b190 + 3*b191 =L= -20; e121.. -(sqrt(i7*x43) + sqrt(i8*x44) + sqrt(i9*x45) + sqrt(i10*x46) + sqrt(i11* x47) + sqrt(i12*x48)) + b49 + 2*b50 + 3*b51 + 4*b52 + 5*b53 + 6*b54 + 7*b55 + 8*b56 + 9*b57 + 10*b58 + 11*b59 + 12*b60 + 13*b61 + 14*b62 + b63 + 2*b64 + 3*b65 + 4*b66 + 5*b67 + 6*b68 + 7*b69 + 8*b70 + 9*b71 + 10*b72 + 11*b73 + 12*b74 + b75 + 2*b76 + 3*b77 + 4*b78 + 5*b79 + 6*b80 + 7*b81 + 8*b82 + b83 + 2*b84 + 3*b85 + 4*b86 + 5*b87 + 6*b88 + 7*b89 + b90 + 2*b91 + 3*b92 + 4*b93 + b94 + 2*b95 + b192 + 2*b193 + 3*b194 + 4*b195 + b196 + 2*b197 + 3*b198 + 4*b199 + b200 + 2*b201 + 3*b202 + 4*b203 + b204 + 2*b205 + 3*b206 + 4*b207 + b208 + 2*b209 + 3*b210 + 4*b211 + b212 + 2*b213 + 3*b214 + 4*b215 =L= -22; * set non-default bounds i7.lo = 1; i7.up = 100; i8.lo = 1; i8.up = 100; i9.lo = 1; i9.up = 100; i10.lo = 1; i10.up = 100; i11.lo = 1; i11.up = 100; i12.lo = 1; i12.up = 100; x13.lo = 1; x14.lo = 1; x15.lo = 1; x16.lo = 1; x17.lo = 1; x18.lo = 1; x19.lo = 1; x20.lo = 1; x21.lo = 1; x22.lo = 1; x23.lo = 1; x24.lo = 1; x25.lo = 1; x26.lo = 1; x27.lo = 1; x28.lo = 1; x29.lo = 1; x30.lo = 1; x31.lo = 1; x32.lo = 1; x33.lo = 1; x34.lo = 1; x35.lo = 1; x36.lo = 1; x37.lo = 1; x38.lo = 1; x39.lo = 1; x40.lo = 1; x41.lo = 1; x42.lo = 1; x43.lo = 1; x44.lo = 1; x45.lo = 1; x46.lo = 1; x47.lo = 1; x48.lo = 1; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91