MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance tltr

Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
48.06666667 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
48.06666667 (ANTIGONE)
48.06666667 (BARON)
48.06666667 (COUENNE)
48.06666667 (GUROBI)
48.06666667 (LINDO)
48.06666667 (SCIP)
48.06666667 (SHOT)
Source GAMS Client
Application Trim loss minimization problem
Added to library 01 May 2001
Problem type MIQCP
#Variables 48
#Binary Variables 12
#Integer Variables 36
#Nonlinear Variables 36
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 36
Objective Sense min
Objective type linear
Objective curvature linear
#Nonzeros in Objective 11
#Nonlinear Nonzeros in Objective 0
#Constraints 54
#Linear Constraints 51
#Quadratic Constraints 3
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature indefinite
#Nonzeros in Jacobian 216
#Nonlinear Nonzeros in Jacobian 54
#Nonzeros in (Upper-Left) Hessian of Lagrangian 54
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 9
Minimal blocksize in Hessian of Lagrangian 4
Maximal blocksize in Hessian of Lagrangian 4
Average blocksize in Hessian of Lagrangian 4.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 1.0000e+00
Maximal coefficient 1.2700e+03
Infeasibility of initial point 560
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         55        1        3       51        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         49        1       12       36        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        228      174       54        0
*
*  Solve m using MINLP minimizing objvar;


Variables  b1,b2,b3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18,i19
          ,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,i40,i41,i42,i43,i44,i45,i46,i47,i48,objvar;

Binary Variables  b1,b2,b3,b31,b32,b33,b34,b35,b36,b37,b38,b39;

Integer Variables  i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14,i15,i16,i17,i18,i19
          ,i20,i21,i22,i23,i24,i25,i26,i27,i28,i29,i30,i40,i41,i42,i43,i44,i45
          ,i46,i47,i48;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19
          ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36
          ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53
          ,e54,e55;


e1..  - 35*b2 - 35*b3 - 6.53333333333333*b31 - 6.53333333333333*b32
      - 6.7375*b33 - 6.53333333333333*b34 - 6.53333333333333*b35 - 6.7375*b36
      - 6.53333333333333*b37 - 6.53333333333333*b38 - 6.7375*b39 + objvar =E= 0
     ;

e2.. i40*i4 + i43*i7 + i46*i10 + i41*i5 + i44*i8 + i47*i11 + i42*i6 + i45*i9 + 
     i48*i12 =G= 9;

e3.. i40*i13 + i43*i16 + i46*i19 + i41*i14 + i44*i17 + i47*i20 + i42*i15 + i45*
     i18 + i48*i21 =G= 15;

e4.. i40*i22 + i43*i25 + i46*i28 + i41*i23 + i44*i26 + i47*i29 + i42*i24 + i45*
     i27 + i48*i30 =G= 80;

e5..    12*i4 + 24*i13 + 36*i22 - 48*b31 =L= 0;

e6..    12*i5 + 24*i14 + 36*i23 - 48*b32 =L= 0;

e7..    12*i6 + 24*i15 + 36*i24 - 62*b33 =L= 0;

e8..    12*i7 + 24*i16 + 36*i25 - 48*b34 =L= 0;

e9..    12*i8 + 24*i17 + 36*i26 - 48*b35 =L= 0;

e10..    12*i9 + 24*i18 + 36*i27 - 62*b36 =L= 0;

e11..    12*i10 + 24*i19 + 36*i28 - 48*b37 =L= 0;

e12..    12*i11 + 24*i20 + 36*i29 - 48*b38 =L= 0;

e13..    12*i12 + 24*i21 + 36*i30 - 62*b39 =L= 0;

e14..  - i4 - i13 - i22 + b31 =L= 0;

e15..  - i5 - i14 - i23 + b32 =L= 0;

e16..  - i6 - i15 - i24 + b33 =L= 0;

e17..  - i7 - i16 - i25 + b34 =L= 0;

e18..  - i8 - i17 - i26 + b35 =L= 0;

e19..  - i9 - i18 - i27 + b36 =L= 0;

e20..  - i10 - i19 - i28 + b37 =L= 0;

e21..  - i11 - i20 - i29 + b38 =L= 0;

e22..  - i12 - i21 - i30 + b39 =L= 0;

e23..  - 72*b31 + i40 =L= 0;

e24..  - 182*b32 + i41 =L= 0;

e25..  - 182*b33 + i42 =L= 0;

e26..  - 72*b34 + i43 =L= 0;

e27..  - 182*b35 + i44 =L= 0;

e28..  - 182*b36 + i45 =L= 0;

e29..  - 72*b37 + i46 =L= 0;

e30..  - 182*b38 + i47 =L= 0;

e31..  - 182*b39 + i48 =L= 0;

e32..    i4 + i13 + i22 - 5*b31 =L= 0;

e33..    i5 + i14 + i23 - 5*b32 =L= 0;

e34..    i6 + i15 + i24 - 5*b33 =L= 0;

e35..    i7 + i16 + i25 - 5*b34 =L= 0;

e36..    i8 + i17 + i26 - 5*b35 =L= 0;

e37..    i9 + i18 + i27 - 5*b36 =L= 0;

e38..    i10 + i19 + i28 - 5*b37 =L= 0;

e39..    i11 + i20 + i29 - 5*b38 =L= 0;

e40..    i12 + i21 + i30 - 5*b39 =L= 0;

e41..  - 500*b1 + 7*i40 + 7*i43 + 7*i46 =L= 0;

e42..  - 1270*b2 + 7*i41 + 7*i44 + 7*i47 =L= 0;

e43..  - 1270*b3 + 7*i42 + 7*i45 + 7*i48 =L= 0;

e44..  - b31 + b34 =L= 0;

e45..  - b32 + b35 =L= 0;

e46..  - b33 + b36 =L= 0;

e47..  - b34 + b37 =L= 0;

e48..  - b35 + b38 =L= 0;

e49..  - b36 + b39 =L= 0;

e50..  - i40 + i43 =L= 0;

e51..  - i41 + i44 =L= 0;

e52..  - i42 + i45 =L= 0;

e53..  - i43 + i46 =L= 0;

e54..  - i44 + i47 =L= 0;

e55..  - i45 + i48 =L= 0;

* set non-default bounds
i4.up = 5;
i5.up = 5;
i6.up = 5;
i7.up = 5;
i8.up = 5;
i9.up = 5;
i10.up = 5;
i11.up = 5;
i12.up = 5;
i13.up = 5;
i14.up = 5;
i15.up = 5;
i16.up = 5;
i17.up = 5;
i18.up = 5;
i19.up = 5;
i20.up = 5;
i21.up = 5;
i22.up = 5;
i23.up = 5;
i24.up = 5;
i25.up = 5;
i26.up = 5;
i27.up = 5;
i28.up = 5;
i29.up = 5;
i30.up = 5;
i40.up = 100;
i41.up = 100;
i42.up = 100;
i43.up = 100;
i44.up = 100;
i45.up = 100;
i46.up = 100;
i47.up = 100;
i48.up = 100;

* set non-default levels
i4.l = 1;
i13.l = 1;
i23.l = 1;
i40.l = 15;
i41.l = 80;
objvar.l = 48.0666666666667;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0