MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance toroidal2g20_5555

A 2-dimensional toroidal grid graph with gaussian distributed weights from an application in statistical physics.
Formats ams gms lp mod nl osil pip py
Primal Bounds (infeas ≤ 1e-08)
24838942.00000000 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
26580673.97000000 (ANTIGONE)
24838942.00000000 (BARON)
28575526.00000000 (COUENNE)
24838942.00000000 (CPLEX)
24838942.00000000 (GUROBI)
24838942.00000000 (LINDO)
24838942.00000000 (SCIP)
24838942.00000000 (SHOT)
References Liers, Frauke, Contributions to Determining Exact Ground-States of Ising Spin-Glasses and to their Physics, PhD thesis, Universität zu Köln, 2004.
Liers, Frauke, Jünger, Michael, Reinelt, Gerhard, and Rinaldi, Giovanni, Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch‐and‐Cut. Chapter 4 in Hartmann, Alexander and Rieger, Heiko, Eds, New Optimization Algorithms in Physics, Wiley, 47-69.
Source QPLIB instance 5755, http://biqmac.aau.at/biqmaclib.html
Application Max Cut
Added to library 18 Aug 2018
Problem type BQP
#Variables 400
#Binary Variables 400
#Integer Variables 0
#Nonlinear Variables 400
#Nonlinear Binary Variables 400
#Nonlinear Integer Variables 0
Objective Sense max
Objective type quadratic
Objective curvature indefinite
#Nonzeros in Objective 400
#Nonlinear Nonzeros in Objective 400
#Constraints 0
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions  
Constraints curvature linear
#Nonzeros in Jacobian 0
#Nonlinear Nonzeros in Jacobian 0
#Nonzeros in (Upper-Left) Hessian of Lagrangian 1600
#Nonzeros in Diagonal of Hessian of Lagrangian 0
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 400
Maximal blocksize in Hessian of Lagrangian 400
Average blocksize in Hessian of Lagrangian 400.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 7.2000e+01
Maximal coefficient 6.6063e+05
Infeasibility of initial point 0
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          1        1        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*        401        1      400        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        401        1      400        0
*
*  Solve m using MIQCP maximizing objvar;


Variables  objvar,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18
          ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35
          ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52
          ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69
          ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86
          ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102
          ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115
          ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128
          ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141
          ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154
          ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167
          ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180
          ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193
          ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206
          ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219
          ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232
          ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245
          ,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258
          ,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271
          ,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284
          ,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297
          ,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310
          ,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323
          ,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336
          ,b337,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349
          ,b350,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362
          ,b363,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375
          ,b376,b377,b378,b379,b380,b381,b382,b383,b384,b385,b386,b387,b388
          ,b389,b390,b391,b392,b393,b394,b395,b396,b397,b398,b399,b400,b401;

Binary Variables  b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18
          ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35
          ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52
          ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69
          ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86
          ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102
          ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115
          ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128
          ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141
          ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154
          ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167
          ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180
          ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193
          ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206
          ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219
          ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232
          ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245
          ,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258
          ,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271
          ,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284
          ,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297
          ,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310
          ,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323
          ,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336
          ,b337,b338,b339,b340,b341,b342,b343,b344,b345,b346,b347,b348,b349
          ,b350,b351,b352,b353,b354,b355,b356,b357,b358,b359,b360,b361,b362
          ,b363,b364,b365,b366,b367,b368,b369,b370,b371,b372,b373,b374,b375
          ,b376,b377,b378,b379,b380,b381,b382,b383,b384,b385,b386,b387,b388
          ,b389,b390,b391,b392,b393,b394,b395,b396,b397,b398,b399,b400,b401;

Equations  e1;


e1.. 88308*b2*b3 + 36975*b2 - 71441*b3 - 152144*b2*b21 + 312113*b21 + 37138*b2*
     b22 - 194512*b22 - 47252*b2*b382 + 543005*b382 + 72324*b3*b4 + 153636*b4
      - 107016*b3*b23 + 134501*b23 + 89266*b3*b383 - 93676*b383 - 37852*b4*b5
      + 6006*b5 - 123190*b4*b24 + 86758*b24 - 218554*b4*b384 - 121859*b384 + 
     132884*b5*b6 - 168081*b6 - 107116*b5*b25 + 209790*b25 + 72*b5*b385 - 
     158119*b385 - 70106*b6*b7 - 248927*b7 + 259408*b6*b26 - 176330*b26 + 13976
     *b6*b386 + 229218*b386 + 276920*b7*b8 - 114743*b8 + 285542*b7*b27 - 371090
     *b27 + 5498*b7*b387 + 72493*b387 - 67066*b8*b9 - 32594*b9 + 161066*b8*b28
      - 5071*b28 - 141434*b8*b388 + 136925*b388 - 91080*b9*b10 + 67916*b10 - 
     3848*b9*b29 + 64528*b29 + 227182*b9*b389 - 44581*b389 - 143760*b10*b11 - 
     118962*b11 + 110442*b10*b30 + 54864*b30 - 11434*b10*b390 + 34543*b390 + 
     358716*b11*b12 - 284859*b12 + 175518*b11*b31 - 44703*b31 - 152550*b11*b391
      + 203557*b391 - 102728*b12*b13 + 3958*b13 + 253126*b12*b32 - 6376*b32 + 
     60604*b12*b392 + 40962*b392 - 153454*b13*b14 + 121397*b14 + 181334*b13*b33
      - 44675*b33 + 66932*b13*b393 + 487662*b393 + 132624*b14*b15 - 232326*b15
      + 40840*b14*b34 - 172962*b34 - 262804*b14*b394 + 302960*b394 + 191734*b15
     *b16 - 182462*b16 + 482936*b15*b35 - 377624*b35 - 342642*b15*b395 + 425030
     *b395 + 212352*b16*b17 - 102852*b17 - 290914*b16*b36 - 119031*b36 + 251752
     *b16*b396 + 29708*b396 - 43908*b17*b18 - 102871*b18 + 65784*b17*b37 - 
     235052*b37 - 28524*b17*b397 - 4281*b397 + 148794*b18*b19 - 372038*b19 - 
     8398*b18*b38 - 47047*b38 + 109254*b18*b398 + 365438*b398 + 80076*b19*b20
      + 105319*b20 + 115506*b19*b39 + 42386*b39 + 399700*b19*b399 - 68946*b399
      - 188782*b20*b21 - 178530*b20*b40 + 30764*b40 + 76598*b20*b400 + 86971*
     b400 - 71290*b21*b41 - 69521*b41 - 212010*b21*b401 + 129008*b401 + 77670*
     b22*b23 + 175006*b22*b41 + 99210*b22*b42 + 22613*b42 + 38634*b23*b24 - 
     278290*b23*b43 + 76365*b43 - 220490*b24*b25 + 131530*b24*b44 - 99687*b44
      - 14858*b25*b26 - 77116*b25*b45 + 114701*b45 + 55374*b26*b27 + 52736*b26*
     b46 - 160262*b46 + 17308*b27*b28 + 383956*b27*b47 - 538014*b47 - 9976*b28*
     b29 - 158256*b28*b48 - 229175*b48 + 6582*b29*b30 - 121814*b29*b49 - 84531*
     b49 - 40478*b30*b31 - 186274*b30*b50 + 255166*b50 - 39870*b31*b32 - 5764*
     b31*b51 + 133099*b51 + 40760*b32*b33 - 241264*b32*b52 + 133512*b52 + 
     230974*b33*b34 - 363718*b33*b53 + 204711*b53 + 69560*b34*b35 + 4550*b34*
     b54 - 248212*b54 + 64120*b35*b36 + 138632*b35*b55 - 76725*b55 + 352380*b36
     *b37 + 112476*b36*b56 - 72202*b56 - 106234*b37*b38 + 158174*b37*b57 - 
     201298*b57 + 105824*b38*b39 + 102902*b38*b58 - 53901*b58 - 168066*b39*b40
      - 138036*b39*b59 + 136809*b59 + 28294*b40*b41 + 256774*b40*b60 - 50955*
     b60 + 7032*b41*b61 + 72119*b61 - 87654*b42*b43 - 83632*b42*b61 + 26850*b42
     *b62 - 195421*b62 + 96658*b43*b44 + 116556*b43*b63 + 49643*b63 - 136618*
     b44*b45 + 107804*b44*b64 - 49446*b64 + 135464*b45*b46 - 151132*b45*b65 + 
     254786*b65 + 181282*b46*b47 - 48958*b46*b66 + 58852*b66 + 372384*b47*b48
      + 138406*b47*b67 + 52672*b67 + 239546*b48*b49 + 4676*b48*b68 + 266599*b68
      + 24940*b49*b50 + 26390*b49*b69 + 57768*b69 - 205666*b50*b51 - 143332*b50
     *b70 + 20975*b70 - 179174*b51*b52 + 124406*b51*b71 + 106358*b71 + 294528*
     b52*b53 - 141114*b52*b72 + 100996*b72 + 208436*b53*b54 - 548668*b53*b73 + 
     193725*b73 - 77000*b54*b55 + 360438*b54*b74 - 77504*b74 - 11554*b55*b56 + 
     103372*b55*b75 + 46522*b75 + 50336*b56*b57 - 6854*b56*b76 - 244644*b76 + 
     88390*b57*b58 + 105696*b57*b77 - 213061*b77 - 262846*b58*b59 + 179356*b58*
     b78 - 198120*b78 + 213030*b59*b60 - 85766*b59*b79 + 168463*b79 - 228174*
     b60*b61 - 139720*b60*b80 + 335806*b80 + 160536*b61*b81 - 304485*b81 - 
     91348*b62*b63 + 418560*b62*b81 + 36780*b62*b82 + 158240*b82 - 71674*b63*
     b64 - 52820*b63*b83 - 34755*b83 - 221412*b64*b65 + 284174*b64*b84 + 7581*
     b84 - 319010*b65*b66 + 181982*b65*b85 + 155675*b85 + 47864*b66*b67 + 
     202400*b66*b86 - 189962*b86 - 448530*b67*b68 + 156916*b67*b87 - 245198*b87
      - 150586*b68*b69 + 61242*b68*b88 - 370545*b88 - 91548*b69*b70 + 100208*
     b69*b89 - 408825*b89 - 97296*b70*b71 + 290226*b70*b90 - 201401*b90 - 
     173910*b71*b72 - 65916*b71*b91 + 44282*b91 + 72868*b72*b73 + 40164*b72*b92
      - 39281*b92 - 90540*b73*b74 + 178890*b73*b93 - 35742*b93 - 250162*b74*b75
      + 135272*b74*b94 - 318104*b94 + 54810*b75*b76 - 1064*b75*b95 - 129378*b95
      + 142026*b76*b77 + 299306*b76*b96 - 147052*b96 + 193584*b77*b78 - 15184*
     b77*b97 - 17411*b97 - 66010*b78*b79 + 89310*b78*b98 - 2491*b98 - 241540*
     b79*b80 + 56390*b79*b99 - 91436*b99 - 133038*b80*b81 - 157314*b80*b100 + 
     197466*b100 + 162912*b81*b101 + 93934*b101 - 50688*b82*b83 - 71660*b82*
     b101 - 230912*b82*b102 + 266023*b102 + 120312*b83*b84 + 52706*b83*b103 - 
     212944*b103 - 247770*b84*b85 - 171878*b84*b104 - 205689*b104 + 428*b85*b86
      - 245990*b85*b105 - 146078*b105 + 81122*b86*b87 + 95974*b86*b106 + 40223*
     b106 + 242214*b87*b88 + 10144*b87*b107 + 29979*b107 + 360142*b88*b89 + 
     77492*b88*b108 + 228138*b108 + 70618*b89*b90 + 286682*b89*b109 + 146913*
     b109 + 58430*b90*b91 - 16472*b90*b110 + 174512*b110 - 130892*b91*b92 + 
     49814*b91*b111 - 209880*b111 + 133520*b92*b93 + 35770*b92*b112 + 31814*
     b112 - 82272*b93*b94 - 158654*b93*b113 - 31643*b113 + 464618*b94*b95 + 
     118590*b94*b114 - 24859*b114 - 260194*b95*b96 + 55396*b95*b115 - 148598*
     b115 + 260106*b96*b97 - 5114*b96*b116 - 339734*b116 - 211910*b97*b98 + 
     1810*b97*b117 + 163626*b117 - 8602*b98*b99 + 136184*b98*b118 - 20323*b118
      + 65022*b99*b100 + 70062*b99*b119 - 101167*b119 - 147876*b100*b101 - 
     154764*b100*b120 - 64489*b120 - 131244*b101*b121 + 215500*b121 + 108850*
     b102*b103 - 264378*b102*b121 - 145606*b102*b122 + 194966*b122 + 225272*
     b103*b104 + 39060*b103*b123 - 72566*b123 + 309328*b104*b105 + 48656*b104*
     b124 + 169396*b124 + 140864*b105*b106 + 87954*b105*b125 + 163573*b125 - 
     272998*b106*b107 - 44286*b106*b126 - 22719*b126 - 73698*b107*b108 + 276594
     *b107*b127 - 380688*b127 - 184454*b108*b109 - 275616*b108*b128 - 191059*
     b128 - 225244*b109*b110 - 170810*b109*b129 - 46291*b129 - 75692*b110*b111
      - 31616*b110*b130 + 369696*b130 + 244344*b111*b112 + 201294*b111*b131 + 
     213967*b131 - 84868*b112*b113 - 258874*b112*b132 + 315728*b132 + 13948*
     b113*b114 + 292860*b113*b133 - 156767*b133 - 99590*b114*b115 + 16770*b114*
     b134 - 246533*b134 + 45840*b115*b116 + 295550*b115*b135 - 169955*b135 + 
     149758*b116*b117 + 488984*b116*b136 + 27158*b136 - 410472*b117*b118 - 
     68348*b117*b137 + 336322*b137 + 93900*b118*b119 + 221034*b118*b138 + 
     162624*b138 + 202478*b119*b120 - 164106*b119*b139 + 153204*b139 - 56774*
     b120*b121 + 138038*b120*b140 - 95926*b140 + 21396*b121*b141 + 31886*b141
      - 66490*b122*b123 - 15272*b122*b141 - 162564*b122*b142 + 261236*b142 + 
     9382*b123*b124 + 163180*b123*b143 + 4377*b143 - 92842*b124*b125 - 303988*
     b124*b144 + 340956*b144 - 295986*b125*b126 - 26272*b125*b145 - 204683*b145
      + 106958*b126*b127 + 278752*b126*b146 - 153780*b146 + 346368*b127*b128 + 
     31456*b127*b147 - 201182*b147 + 101322*b128*b129 + 210044*b128*b148 - 
     242243*b148 - 174870*b129*b130 + 336940*b129*b149 - 338410*b149 - 503306*
     b130*b131 - 29600*b130*b150 + 234048*b150 - 82450*b131*b132 - 43472*b131*
     b151 + 99643*b151 - 157888*b132*b133 - 132244*b132*b152 + 2610*b152 - 
     33712*b133*b134 + 212274*b133*b153 - 152028*b153 + 285828*b134*b135 + 
     224180*b134*b154 + 88983*b154 - 181098*b135*b136 - 60370*b135*b155 + 60216
     *b155 - 114972*b136*b137 - 247230*b136*b156 + 159323*b156 - 372446*b137*
     b138 - 116878*b137*b157 + 90782*b157 + 8976*b138*b139 - 182812*b138*b158
      + 134167*b158 + 23220*b139*b140 - 174498*b139*b159 + 670*b159 - 60700*
     b140*b141 + 91294*b140*b160 - 173363*b160 - 9196*b141*b161 + 185523*b161
      - 920*b142*b143 - 580678*b142*b161 + 221690*b142*b162 - 338499*b162 - 
     143548*b143*b144 - 27466*b143*b163 + 8965*b163 - 51492*b144*b145 - 182884*
     b144*b164 - 85068*b164 + 130868*b145*b146 + 356262*b145*b165 - 235096*b165
      - 56488*b146*b147 - 45572*b146*b166 + 45775*b166 + 379792*b147*b148 + 
     47604*b147*b167 - 94168*b167 + 145884*b148*b149 - 251234*b148*b168 - 92961
     *b168 - 45132*b149*b150 + 239128*b149*b169 - 302431*b169 - 233940*b150*
     b151 - 159424*b150*b170 + 308967*b170 + 39908*b151*b152 + 38218*b151*b171
      + 137685*b171 + 93908*b152*b153 - 6792*b152*b172 + 777*b172 - 229288*b153
     *b154 + 227162*b153*b173 - 237387*b173 + 47604*b154*b155 - 220462*b154*
     b174 + 164004*b174 + 136946*b155*b156 - 244612*b155*b175 + 385611*b175 - 
     16236*b156*b157 - 192126*b156*b176 + 230136*b176 - 128302*b157*b158 + 
     79852*b157*b177 - 193974*b177 - 229422*b158*b159 + 272202*b158*b178 - 
     149864*b178 + 100410*b159*b160 + 302170*b159*b179 - 363156*b179 + 79178*
     b160*b161 + 75844*b160*b180 - 81594*b180 + 139650*b161*b181 - 112309*b181
      + 157512*b162*b163 + 337940*b162*b181 - 40144*b162*b182 + 146455*b182 - 
     10374*b163*b164 - 137602*b163*b183 - 19229*b183 + 175498*b164*b165 + 
     187896*b164*b184 - 82206*b184 + 35182*b165*b166 - 96750*b165*b185 + 349886
     *b185 + 89236*b166*b167 - 170396*b166*b186 + 184644*b186 + 16990*b167*b168
      + 34506*b167*b187 + 69523*b187 + 281568*b168*b169 + 138598*b168*b188 - 
     100673*b188 - 56320*b169*b170 + 140486*b169*b189 - 249627*b189 - 143406*
     b170*b171 - 258784*b170*b190 - 22179*b190 - 213676*b171*b172 + 43494*b171*
     b191 + 316872*b191 - 112052*b172*b173 + 330966*b172*b192 + 73242*b192 - 
     229418*b173*b174 + 589082*b173*b193 - 340636*b193 - 91228*b174*b175 + 
     213100*b174*b194 - 369674*b194 - 373016*b175*b176 - 62366*b175*b195 - 
     31823*b195 + 143090*b176*b177 - 38220*b176*b196 - 47769*b196 - 7704*b177*
     b178 + 172710*b177*b197 - 81760*b197 - 2936*b178*b179 + 38166*b178*b198 + 
     49096*b198 + 268856*b179*b180 + 158222*b179*b199 + 6390*b199 + 20558*b180*
     b181 - 202070*b180*b200 + 254106*b200 - 273530*b181*b201 + 219874*b201 - 
     165362*b182*b183 + 60426*b182*b201 - 147830*b182*b202 - 279111*b202 + 
     120540*b183*b184 + 220882*b183*b203 - 273191*b203 - 237764*b184*b185 + 
     93740*b184*b204 - 301916*b204 - 167498*b185*b186 - 197760*b185*b205 + 
     59494*b205 - 187312*b186*b187 + 155918*b186*b206 - 88524*b206 + 141996*
     b187*b188 - 128236*b187*b207 - 13526*b207 + 28370*b188*b189 - 107618*b188*
     b208 + 159411*b208 + 175648*b189*b190 + 154750*b189*b209 + 132610*b209 - 
     200552*b190*b191 + 328046*b190*b210 - 123115*b210 - 336856*b191*b192 - 
     139830*b191*b211 - 52174*b211 - 270156*b192*b193 + 129562*b192*b212 + 
     197979*b212 + 185326*b193*b194 + 177020*b193*b213 - 48493*b213 + 153452*
     b194*b195 + 187470*b194*b214 - 327732*b214 - 95878*b195*b196 + 68438*b195*
     b215 - 510573*b215 + 107756*b196*b197 + 121880*b196*b216 - 91117*b216 - 
     257656*b197*b198 + 140710*b197*b217 + 127771*b217 + 173522*b198*b199 - 
     52224*b198*b218 + 161011*b218 - 256670*b199*b200 - 87854*b199*b219 + 
     170759*b219 - 78802*b200*b201 + 29330*b200*b220 - 50331*b220 - 147842*b201
     *b221 - 158166*b221 + 61256*b202*b203 + 257404*b202*b221 + 387392*b202*
     b222 - 52495*b222 + 248308*b203*b204 + 15936*b203*b223 + 171150*b223 + 
     375630*b204*b205 - 113846*b204*b224 - 163566*b224 - 419068*b205*b206 + 
     122210*b205*b225 - 386396*b225 + 156658*b206*b207 + 283540*b206*b226 - 
     270160*b226 + 120388*b207*b208 - 121758*b207*b227 - 161325*b227 - 230530*
     b208*b209 - 101062*b208*b228 - 91171*b228 - 101270*b209*b210 - 88170*b209*
     b229 - 304403*b229 - 13064*b210*b211 + 32518*b210*b230 - 254442*b230 + 
     71042*b211*b212 + 186200*b211*b231 + 65319*b231 - 235874*b212*b213 - 
     360688*b212*b232 + 431096*b232 + 223214*b213*b214 - 67374*b213*b233 + 
     104294*b233 + 195966*b214*b215 + 48814*b214*b234 + 85993*b234 + 261952*
     b215*b216 + 494790*b215*b235 - 49686*b235 - 106516*b216*b217 - 95082*b216*
     b236 + 44960*b236 - 314468*b217*b218 + 24732*b217*b237 - 359111*b237 - 
     156574*b218*b219 + 201244*b218*b238 - 553060*b238 - 82796*b219*b220 - 
     14294*b219*b239 - 73141*b239 + 96052*b220*b221 + 58076*b220*b240 + 79949*
     b240 + 110718*b221*b241 - 111536*b241 - 132494*b222*b223 - 134044*b222*
     b241 - 15864*b222*b242 - 114314*b242 - 190668*b223*b224 - 35074*b223*b243
      + 59212*b243 + 250974*b224*b225 + 380672*b224*b244 - 95981*b244 + 242250*
     b225*b226 + 157358*b225*b245 + 43909*b245 + 253466*b226*b227 - 238936*b226
     *b246 + 96561*b246 - 55692*b227*b228 + 246634*b227*b247 - 337233*b247 + 
     288936*b228*b229 + 50160*b228*b248 + 106206*b248 + 486554*b229*b230 - 
     78514*b229*b249 + 137470*b249 + 7352*b230*b231 - 17540*b230*b250 - 200621*
     b250 - 316316*b231*b232 - 7874*b231*b251 - 130304*b251 - 91902*b232*b233
      - 93286*b232*b252 - 121892*b252 + 17848*b233*b234 - 67160*b233*b253 + 
     100475*b253 - 10138*b234*b235 - 228510*b234*b254 + 179654*b254 - 15844*
     b235*b236 - 369436*b235*b255 + 313023*b255 + 179912*b236*b237 - 158906*
     b236*b256 - 192877*b256 + 353508*b237*b238 + 160070*b237*b257 - 171276*
     b257 + 89294*b238*b239 + 462074*b238*b258 + 69869*b258 + 32728*b239*b240
      + 38554*b239*b259 - 27506*b259 + 71230*b240*b241 - 321932*b240*b260 + 
     49874*b260 + 175168*b241*b261 - 310413*b261 + 41006*b242*b243 + 97292*b242
     *b261 + 106194*b242*b262 + 8205*b262 - 187360*b243*b244 + 63004*b243*b263
      - 30088*b263 - 129990*b244*b245 + 128640*b244*b264 - 188452*b264 - 117848
     *b245*b246 + 2662*b245*b265 - 191933*b265 - 52522*b246*b247 + 216184*b246*
     b266 - 155328*b266 + 156140*b247*b248 + 324214*b247*b267 - 282863*b267 - 
     443746*b248*b249 + 25034*b248*b268 + 208727*b268 + 181372*b249*b250 + 
     65948*b249*b269 + 257587*b269 + 195204*b250*b251 + 42206*b250*b270 + 30420
     *b270 + 152444*b251*b252 - 79166*b251*b271 + 251633*b271 + 159122*b252*
     b253 + 25504*b252*b272 + 163500*b272 - 133702*b253*b254 - 159210*b253*b273
      - 186972*b273 - 27112*b254*b255 + 30016*b254*b274 + 16280*b274 - 101310*
     b255*b256 - 128188*b255*b275 + 170750*b275 + 352246*b256*b257 + 293724*
     b256*b276 - 128050*b276 - 179486*b257*b258 + 9722*b257*b277 + 124723*b277
      - 463186*b258*b259 + 40860*b258*b278 - 31160*b278 + 314304*b259*b260 + 
     165340*b259*b279 - 269192*b279 + 294310*b260*b261 - 386430*b260*b280 + 
     296336*b280 + 54056*b261*b281 + 287919*b281 + 95394*b262*b263 - 318890*
     b262*b281 + 100892*b262*b282 - 462851*b282 - 71152*b263*b264 - 27070*b263*
     b283 - 92879*b283 + 233886*b264*b265 + 85530*b264*b284 - 50036*b284 + 
     59872*b265*b266 + 87446*b265*b285 - 30890*b285 + 154214*b266*b267 - 119614
     *b266*b286 + 115465*b286 - 89710*b267*b268 + 177008*b267*b287 + 155344*
     b287 - 283224*b268*b269 - 69554*b268*b288 + 167753*b288 - 146652*b269*b270
      - 151246*b269*b289 - 42903*b289 - 28240*b270*b271 + 71846*b270*b290 - 
     390420*b290 - 120458*b271*b272 - 275402*b271*b291 + 2256*b291 + 124164*
     b272*b273 - 356210*b272*b292 + 112797*b292 - 2372*b273*b274 + 411362*b273*
     b293 - 211679*b293 - 112572*b274*b275 + 52368*b274*b294 + 118242*b294 - 
     41228*b275*b276 - 59512*b275*b295 + 285106*b295 + 31550*b276*b277 - 27946*
     b276*b296 + 406811*b296 + 12010*b277*b278 - 302728*b277*b297 + 256103*b297
      + 110626*b278*b279 - 101176*b278*b298 + 118470*b298 + 66912*b279*b280 + 
     195506*b279*b299 + 139346*b299 - 450064*b280*b281 + 176910*b280*b300 + 
     148289*b300 + 139060*b281*b301 - 151289*b301 + 374970*b282*b283 + 138356*
     b282*b301 + 311484*b282*b302 - 26673*b302 - 217714*b283*b284 + 55572*b283*
     b303 + 36051*b303 + 169554*b284*b285 + 62702*b284*b304 - 107418*b304 + 
     73836*b285*b286 - 269056*b285*b305 + 484490*b305 - 66962*b286*b287 - 
     118190*b286*b306 + 151719*b306 + 57810*b287*b288 - 478544*b287*b307 + 
     239231*b307 - 48922*b288*b289 - 274840*b288*b308 + 90140*b308 + 409760*
     b289*b290 - 123786*b289*b309 + 293036*b309 + 225986*b290*b291 + 73248*b290
     *b310 + 257848*b310 - 85704*b291*b292 + 130608*b291*b311 + 318156*b311 + 
     119106*b292*b293 + 97214*b292*b312 - 4990*b312 - 160804*b293*b294 + 53694*
     b293*b313 - 118883*b313 + 85894*b294*b295 - 213942*b294*b314 + 75344*b314
      - 427392*b295*b296 - 169202*b295*b315 + 301306*b315 - 190792*b296*b297 - 
     167492*b296*b316 + 287450*b316 + 129566*b297*b298 - 148252*b297*b317 + 
     125499*b317 - 236296*b298*b299 - 29034*b298*b318 + 60480*b318 - 368788*
     b299*b300 + 130886*b299*b319 + 308471*b319 - 85466*b300*b301 - 19234*b300*
     b320 + 159245*b320 + 110628*b301*b321 + 6353*b321 + 77928*b302*b303 - 
     224892*b302*b321 - 111174*b302*b322 - 4471*b322 + 47662*b303*b304 - 253264
     *b303*b323 + 258656*b323 - 160878*b304*b305 + 265350*b304*b324 - 108957*
     b324 - 256058*b305*b306 - 282988*b305*b325 + 58546*b325 - 3096*b306*b307
      + 73906*b306*b326 + 106320*b326 - 153726*b307*b308 + 156904*b307*b327 - 
     44437*b327 - 7672*b308*b309 + 255958*b308*b328 - 253243*b328 - 235056*b309
     *b310 - 219558*b309*b329 + 10647*b329 - 331664*b310*b311 - 22224*b310*b330
      + 273382*b330 - 250614*b311*b312 - 184642*b311*b331 + 232556*b331 + 
     318862*b312*b313 - 155482*b312*b332 - 143741*b332 - 9928*b313*b314 - 
     124862*b313*b333 + 135647*b333 - 83340*b314*b315 + 156522*b314*b334 + 
     38153*b334 - 296074*b315*b316 - 53996*b315*b335 - 281830*b335 - 160002*
     b316*b317 + 48668*b316*b336 + 28085*b336 + 78852*b317*b318 - 21596*b317*
     b337 + 25316*b337 - 368894*b318*b319 + 198116*b318*b338 - 49028*b338 - 
     199592*b319*b320 - 179342*b319*b339 - 414863*b339 + 237576*b320*b321 - 
     337240*b320*b340 + 66089*b340 - 136018*b321*b341 - 22889*b341 - 80968*b322
     *b323 + 202112*b322*b341 - 1028*b322*b342 + 38022*b342 - 216170*b323*b324
      + 33090*b323*b343 + 207851*b343 + 64764*b324*b325 + 103970*b324*b344 + 
     168708*b344 - 140918*b325*b326 + 242050*b325*b345 + 117992*b345 - 249412*
     b326*b327 + 103784*b326*b346 + 30827*b346 - 32640*b327*b328 + 214022*b327*
     b347 - 399962*b347 + 291600*b328*b329 - 8432*b328*b348 - 174591*b348 - 
     97696*b329*b330 + 4360*b329*b349 + 81786*b349 - 200340*b330*b331 - 226504*
     b330*b350 + 206018*b350 + 44502*b331*b332 - 124632*b331*b351 + 202501*b351
      + 301802*b332*b333 + 96660*b332*b352 - 57099*b352 - 278516*b333*b334 - 
     169718*b333*b353 + 457941*b353 - 71416*b334*b335 + 117104*b334*b354 + 
     210093*b354 + 135066*b335*b336 + 554006*b335*b355 - 67439*b355 + 80642*
     b336*b337 - 320546*b336*b356 + 312658*b356 - 159598*b337*b338 + 49920*b337
     *b357 - 135053*b357 + 304082*b338*b339 - 244544*b338*b358 + 183260*b358 + 
     219160*b339*b340 + 485826*b339*b359 - 286194*b359 - 6126*b340*b341 - 7972*
     b340*b360 - 11369*b360 - 14190*b341*b361 - 36124*b361 - 305818*b342*b343
      + 138202*b342*b361 + 92600*b342*b362 - 127569*b362 - 3548*b343*b344 - 
     139426*b343*b363 - 26685*b363 + 31534*b344*b345 - 469372*b344*b364 + 
     336108*b364 - 209122*b345*b346 - 300446*b345*b365 + 57583*b365 + 204752*
     b346*b347 - 161068*b346*b366 - 136507*b366 - 26196*b347*b348 + 407346*b347
     *b367 - 660630*b367 + 155772*b348*b349 + 228038*b348*b368 - 254935*b368 - 
     406318*b349*b350 + 82614*b349*b369 + 54794*b369 + 22670*b350*b351 + 198116
     *b350*b370 - 173657*b370 + 3226*b351*b352 - 306266*b351*b371 + 38101*b371
      - 140424*b352*b353 + 154736*b352*b372 - 296556*b372 - 255164*b353*b354 - 
     350576*b353*b373 + 261056*b373 - 102858*b354*b355 - 179268*b354*b374 - 
     130339*b374 - 500920*b355*b356 + 184650*b355*b375 - 191861*b375 + 23966*
     b356*b357 + 172184*b356*b376 - 274843*b376 + 5290*b357*b358 + 190930*b357*
     b377 - 454260*b377 + 130444*b358*b359 - 257710*b358*b378 + 274885*b378 + 
     18556*b359*b360 - 62438*b359*b379 - 65182*b379 + 62918*b360*b361 - 50764*
     b360*b380 - 141092*b380 - 114682*b361*b381 - 458143*b381 - 169396*b362*
     b363 + 526674*b362*b381 - 194740*b362*b382 + 64106*b363*b364 + 298086*b363
     *b383 - 16514*b364*b365 - 250436*b364*b384 + 257678*b365*b366 - 55884*b365
     *b385 + 123314*b366*b367 + 53090*b366*b386 + 334266*b367*b368 + 456334*
     b367*b387 + 19348*b368*b369 - 71782*b368*b388 - 117560*b369*b370 - 93990*
     b369*b389 + 278874*b370*b371 - 12116*b370*b390 - 23224*b371*b372 - 25586*
     b371*b391 + 45502*b372*b373 + 416098*b372*b392 + 239972*b373*b374 - 457010
     *b373*b393 + 63270*b374*b375 + 136704*b374*b394 + 156486*b375*b376 - 20684
     *b375*b395 + 78584*b376*b377 + 142432*b376*b396 + 307592*b377*b378 + 
     331414*b377*b397 + 16466*b378*b379 - 616118*b378*b398 + 367824*b379*b380
      - 191488*b379*b399 + 246450*b380*b381 - 281326*b380*b400 + 257844*b381*
     b401 - 468852*b382*b383 - 375166*b382*b401 + 268852*b383*b384 + 443856*
     b384*b385 - 71806*b385*b386 - 453696*b386*b387 - 153122*b387*b388 + 92488*
     b388*b389 - 136518*b389*b390 + 90982*b390*b391 - 319960*b391*b392 - 238666
     *b392*b393 - 346580*b393*b394 - 133240*b394*b395 - 353494*b395*b396 - 
     100106*b396*b397 - 194222*b397*b398 - 29790*b398*b399 - 40530*b399*b400 + 
     71316*b400*b401 - objvar =E= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% maximizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0