MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance toroidal3g7_6666
A 3-dimensional toroidal grid graph with gaussian distributed weights from an application in statistical physics.
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 39211735.71000000 (ANTIGONE) 36797908.00000000 (BARON) 42645107.00000000 (COUENNE) 33611981.00000000 (CPLEX) 33611981.00000000 (GUROBI) 33611981.00000000 (LINDO) 33611981.00000000 (SCIP) 33611981.00000000 (SHOT) |
Referencesⓘ | Liers, Frauke, Contributions to Determining Exact Ground-States of Ising Spin-Glasses and to their Physics, PhD thesis, Universität zu Köln, 2004. Liers, Frauke, Jünger, Michael, Reinelt, Gerhard, and Rinaldi, Giovanni, Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch‐and‐Cut. Chapter 4 in Hartmann, Alexander and Rieger, Heiko, Eds, New Optimization Algorithms in Physics, Wiley, 47-69. |
Sourceⓘ | QPLIB instance 5725, http://biqmac.aau.at/biqmaclib.html |
Applicationⓘ | Max Cut |
Added to libraryⓘ | 18 Aug 2018 |
Problem typeⓘ | BQP |
#Variablesⓘ | 343 |
#Binary Variablesⓘ | 343 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 343 |
#Nonlinear Binary Variablesⓘ | 343 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | max |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 343 |
#Nonlinear Nonzeros in Objectiveⓘ | 343 |
#Constraintsⓘ | 0 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | linear |
#Nonzeros in Jacobianⓘ | 0 |
#Nonlinear Nonzeros in Jacobianⓘ | 0 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 2058 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 343 |
Maximal blocksize in Hessian of Lagrangianⓘ | 343 |
Average blocksize in Hessian of Lagrangianⓘ | 343.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 3.8000e+01 |
Maximal coefficientⓘ | 8.0919e+05 |
Infeasibility of initial pointⓘ | 0 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 1 1 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 344 1 343 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 344 1 343 0 * * Solve m using MIQCP maximizing objvar; Variables objvar,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154 ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206 ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219 ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232 ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245 ,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258 ,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271 ,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284 ,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297 ,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310 ,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323 ,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336 ,b337,b338,b339,b340,b341,b342,b343,b344; Binary Variables b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18 ,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35 ,b36,b37,b38,b39,b40,b41,b42,b43,b44,b45,b46,b47,b48,b49,b50,b51,b52 ,b53,b54,b55,b56,b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69 ,b70,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86 ,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101,b102 ,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114,b115 ,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127,b128 ,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140,b141 ,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153,b154 ,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166,b167 ,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179,b180 ,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192,b193 ,b194,b195,b196,b197,b198,b199,b200,b201,b202,b203,b204,b205,b206 ,b207,b208,b209,b210,b211,b212,b213,b214,b215,b216,b217,b218,b219 ,b220,b221,b222,b223,b224,b225,b226,b227,b228,b229,b230,b231,b232 ,b233,b234,b235,b236,b237,b238,b239,b240,b241,b242,b243,b244,b245 ,b246,b247,b248,b249,b250,b251,b252,b253,b254,b255,b256,b257,b258 ,b259,b260,b261,b262,b263,b264,b265,b266,b267,b268,b269,b270,b271 ,b272,b273,b274,b275,b276,b277,b278,b279,b280,b281,b282,b283,b284 ,b285,b286,b287,b288,b289,b290,b291,b292,b293,b294,b295,b296,b297 ,b298,b299,b300,b301,b302,b303,b304,b305,b306,b307,b308,b309,b310 ,b311,b312,b313,b314,b315,b316,b317,b318,b319,b320,b321,b322,b323 ,b324,b325,b326,b327,b328,b329,b330,b331,b332,b333,b334,b335,b336 ,b337,b338,b339,b340,b341,b342,b343,b344; Equations e1; e1.. 291597*b2 - 18536*b2*b3 - 32641*b3 - 422274*b2*b8 + 306604*b8 - 278758*b2* b9 + 355770*b9 + 126398*b2*b44 + 146744*b44 - 80296*b2*b51 + 46212*b51 + 90272*b2*b296 - 221026*b296 + 107590*b3*b4 + 363764*b4 - 90358*b3*b10 + 17167*b10 + 138182*b3*b45 - 298970*b45 - 181260*b3*b52 + 274721*b52 + 109664*b3*b297 - 241274*b297 - 19532*b4*b5 + 152028*b5 - 453278*b4*b11 + 90387*b11 - 346010*b4*b46 - 292180*b46 + 87832*b4*b53 + 70070*b53 - 104130 *b4*b298 + 41621*b298 + 192916*b5*b6 - 301909*b6 - 52632*b5*b12 + 295006* b12 + 20442*b5*b47 + 117620*b47 - 288092*b5*b54 + 313696*b54 - 157158*b5* b299 - 106029*b299 - 319348*b6*b7 + 138514*b7 + 268056*b6*b13 - 31656*b13 + 278362*b6*b48 - 179914*b48 + 93596*b6*b55 - 102619*b55 + 90236*b6*b300 + 43477*b300 + 5970*b7*b8 - 233756*b7*b14 + 140106*b14 + 51024*b7*b49 + 291032*b49 + 41136*b7*b56 + 238920*b56 + 177946*b7*b301 + 275637*b301 - 21056*b8*b15 - 185950*b15 - 372018*b8*b50 + 470451*b50 + 215058*b8*b57 - 187683*b57 - 18888*b8*b302 + 187962*b302 - 345956*b9*b10 + 1312*b9*b15 - 135444*b9*b16 + 56109*b16 + 394962*b9*b58 - 415645*b58 - 347656*b9*b303 + 419763*b303 + 160510*b10*b11 + 315226*b10*b17 - 299313*b17 - 2940*b10*b59 - 89882*b59 - 70816*b10*b304 + 257107*b304 + 28104*b11*b12 + 7692*b11*b18 - 76254*b18 - 76858*b11*b60 - 162165*b60 + 153056*b11*b305 - 12538*b305 + 950*b12*b13 - 235358*b12*b19 - 86313*b19 - 123138*b12*b61 + 182868*b61 - 207938*b12*b306 + 139799*b306 + 19380*b13*b14 - 167616*b13*b20 + 350830 *b20 - 64312*b13*b62 - 196376*b62 + 6854*b13*b307 - 126961*b307 - 61640* b14*b15 - 247926*b14*b21 + 534159*b21 + 413752*b14*b63 + 23239*b63 - 170022*b14*b308 + 141626*b308 + 73182*b15*b22 + 89407*b22 + 100330*b15*b64 - 12879*b64 + 279772*b15*b309 - 45167*b309 + 76954*b16*b17 + 216042*b16* b22 + 82820*b16*b23 + 109800*b23 - 100728*b16*b65 - 159422*b65 - 251862* b16*b310 + 369226*b310 + 102082*b17*b18 - 169442*b17*b24 + 250492*b24 + 117840*b17*b66 - 134618*b66 + 155966*b17*b311 - 283121*b311 + 186214*b18* b19 + 174310*b18*b25 - 405258*b25 - 172104*b18*b67 + 72080*b67 - 145686* b18*b312 - 168811*b312 + 42790*b19*b20 - 230328*b19*b26 + 298664*b26 + 221668*b19*b68 - 251252*b68 + 187640*b19*b313 - 5009*b313 - 154214*b20*b21 - 138184*b20*b27 + 330041*b27 - 63200*b20*b69 - 122789*b69 - 221236*b20* b314 + 423021*b314 - 221106*b21*b22 - 166148*b21*b28 - 366843*b28 - 129310 *b21*b70 + 601974*b70 - 149614*b21*b315 + 350608*b315 + 58320*b22*b29 - 118628*b29 - 344334*b22*b71 + 472305*b71 + 39082*b22*b316 - 167667*b316 - 204752*b23*b24 + 118898*b23*b29 - 38690*b23*b30 + 222121*b30 - 220262*b23* b72 - 7066*b72 + 42386*b23*b317 + 349628*b317 + 67224*b24*b25 - 392926*b24 *b31 + 341053*b31 + 133874*b24*b73 - 343540*b73 + 65038*b24*b318 + 161563* b318 + 15642*b25*b26 + 214210*b25*b32 - 269292*b32 + 238534*b25*b74 - 445410*b74 + 100596*b25*b319 + 9071*b319 - 290130*b26*b27 - 50806*b26*b33 + 349514*b33 - 64360*b26*b75 - 216499*b75 + 22654*b26*b320 + 347925*b320 + 28498*b27*b28 + 133994*b27*b34 - 78067*b34 + 81216*b27*b76 - 436199*b76 - 475476*b27*b321 + 239480*b321 + 443598*b28*b29 + 374746*b28*b35 - 14448 *b35 - 69418*b28*b77 - 6854*b77 + 122410*b28*b322 + 150694*b322 - 2556*b29 *b36 + 61922*b36 - 241896*b29*b78 + 70937*b78 - 139108*b29*b323 + 203491* b323 - 126820*b30*b31 + 123784*b30*b36 - 57258*b30*b37 - 99386*b37 - 74014 *b30*b79 + 75318*b79 - 271244*b30*b324 - 24784*b324 + 21424*b31*b32 - 78512*b31*b38 - 115156*b38 + 13172*b31*b80 + 145231*b80 - 118444*b31*b325 + 327211*b325 + 143532*b32*b33 + 147324*b32*b39 - 202862*b39 + 106900*b32 *b81 - 404764*b81 - 94806*b32*b326 + 241083*b326 + 73548*b33*b34 - 426282* b33*b40 + 684125*b40 - 295936*b33*b82 + 297762*b82 - 143084*b33*b327 + 528749*b327 + 72202*b34*b35 - 202764*b34*b41 + 320403*b41 - 165886*b34*b83 + 189399*b83 + 245040*b34*b328 - 204051*b328 + 52874*b35*b36 - 282144*b35 *b42 + 181160*b42 - 134160*b35*b84 + 299687*b84 - 54622*b35*b329 - 68191* b329 + 62296*b36*b43 + 262916*b43 - 536110*b36*b85 + 809194*b85 + 175868* b36*b330 - 149454*b330 - 181850*b37*b38 + 255380*b37*b43 + 244444*b37*b44 + 265968*b37*b86 - 398547*b86 - 327912*b37*b331 - 86538*b331 + 458612*b38 *b39 - 108568*b38*b45 - 118918*b38*b87 + 137780*b87 + 259548*b38*b332 - 165045*b332 - 303944*b39*b40 - 70320*b39*b46 + 18676*b39*b88 - 264056*b88 + 155376*b39*b333 + 54495*b333 - 442598*b40*b41 - 322042*b40*b47 - 240400 *b40*b89 + 277465*b89 + 367016*b40*b334 - 28694*b334 + 87252*b41*b42 - 67098*b41*b48 - 101196*b41*b90 + 210778*b90 + 85598*b41*b335 - 212415*b335 - 174486*b42*b43 - 285136*b42*b49 + 63234*b42*b91 + 39224*b91 + 228960* b42*b336 - 257665*b336 - 375130*b43*b50 + 41944*b43*b92 - 81832*b92 - 335836*b43*b337 + 666735*b337 - 101422*b44*b45 - 384900*b44*b50 - 238070* b44*b93 + 184957*b93 + 60062*b44*b338 - 105053*b338 + 365926*b45*b46 + 196784*b45*b94 - 192434*b94 + 107038*b45*b339 - 110873*b339 + 397648*b46* b47 + 234726*b46*b95 - 430449*b95 + 2390*b46*b340 + 18031*b340 - 31598*b47 *b48 - 247214*b47*b96 + 193928*b96 - 52476*b47*b341 - 323544*b341 + 133060 *b48*b49 - 75190*b48*b97 - 186145*b97 + 122292*b48*b342 - 10720*b342 + 109184*b49*b50 - 523390*b49*b98 + 470321*b98 - 66806*b49*b343 + 159284* b343 + 89280*b50*b99 + 89722*b99 - 7318*b50*b344 + 456546*b344 - 149478* b51*b52 + 204684*b51*b57 + 31190*b51*b58 - 142450*b51*b93 + 43926*b51*b100 + 217172*b100 + 212092*b52*b53 - 189828*b52*b59 - 35084*b52*b94 - 205884* b52*b101 + 247978*b101 - 403170*b53*b54 + 206892*b53*b60 + 3654*b53*b95 - 247440*b53*b102 + 308040*b102 - 37520*b54*b55 - 26296*b54*b61 - 296066*b54 *b96 + 423752*b54*b103 - 286347*b103 + 336358*b55*b56 + 29446*b55*b62 - 36040*b55*b97 - 180602*b55*b104 + 541888*b104 - 357250*b56*b57 - 291942* b56*b63 - 137026*b56*b98 - 69116*b56*b105 + 439374*b105 + 29818*b57*b64 + 58064*b57*b99 + 224992*b57*b106 - 195557*b106 + 268744*b58*b59 + 39540*b58 *b64 + 118180*b58*b65 - 21326*b58*b107 - 196272*b107 + 16256*b59*b60 + 90124*b59*b66 - 2592*b59*b108 - 65933*b108 - 202856*b60*b61 + 66050*b60* b67 + 314846*b60*b109 + 79750*b109 + 163602*b61*b62 - 132360*b61*b68 - 44688*b61*b110 + 319338*b110 + 33392*b62*b63 + 260082*b62*b69 - 29458*b62* b111 + 328254*b111 - 76524*b63*b64 - 435250*b63*b70 + 310094*b63*b112 - 106081*b112 + 244934*b64*b71 - 312340*b64*b113 + 7737*b113 + 176338*b65* b66 + 145176*b65*b71 + 100844*b65*b72 - 120966*b65*b114 + 376365*b114 - 45272*b66*b67 + 284076*b66*b73 - 353870*b66*b115 - 12845*b115 - 144266*b67 *b68 + 77486*b67*b74 + 73946*b67*b116 + 315698*b116 - 105236*b68*b69 + 524878*b68*b75 + 137820*b68*b117 - 196368*b117 - 89948*b69*b70 + 373490* b69*b76 - 129610*b69*b118 + 295357*b118 - 559392*b70*b71 - 101418*b70*b77 + 111370*b70*b119 - 6214*b119 - 5328*b71*b78 - 425666*b71*b120 + 341738* b120 - 112328*b72*b73 - 76716*b72*b78 + 222696*b72*b79 + 99898*b72*b121 + 471982*b121 + 294122*b73*b74 - 213508*b73*b80 + 300844*b73*b122 - 443699* b122 + 215392*b74*b75 - 68856*b74*b81 + 134142*b74*b123 + 84988*b123 + 22944*b75*b76 - 350756*b75*b82 + 84900*b75*b124 + 135298*b124 + 328486*b76 *b77 - 27994*b76*b83 + 94256*b76*b125 + 86383*b125 + 163562*b77*b78 - 188328*b77*b84 - 119176*b77*b126 + 202421*b126 - 69814*b78*b85 + 88318*b78 *b127 + 230887*b127 + 51824*b79*b80 - 310278*b79*b85 + 51540*b79*b86 - 92404*b79*b128 + 398447*b128 + 28606*b80*b81 - 368164*b80*b87 + 197608*b80 *b129 + 74966*b129 + 449552*b81*b82 + 156444*b81*b88 + 136882*b81*b130 - 233342*b130 + 214960*b82*b83 - 431630*b82*b89 - 181714*b82*b131 + 4492* b131 + 13194*b83*b84 - 263180*b83*b90 - 149892*b83*b132 + 25279*b132 - 256776*b84*b85 - 176814*b84*b91 + 143510*b84*b133 + 114986*b133 + 31126* b85*b92 - 476536*b85*b134 + 127964*b134 + 291940*b86*b87 + 105976*b86*b92 - 30008*b86*b93 + 111678*b86*b135 - 70223*b135 + 109696*b87*b88 + 184672* b87*b94 - 374786*b87*b136 + 207980*b136 + 97036*b88*b89 + 436272*b88*b95 - 290012*b88*b137 + 98627*b137 + 17870*b89*b90 + 267604*b89*b96 - 265410* b89*b138 + 156776*b138 - 134890*b90*b91 + 28482*b90*b97 + 31358*b90*b139 + 111355*b139 + 191676*b91*b92 + 55978*b91*b98 - 77632*b91*b140 + 234521* b140 + 2184*b92*b99 - 209242*b92*b141 + 426591*b141 - 140560*b93*b94 + 92518*b93*b99 + 88656*b93*b142 + 333652*b142 + 78204*b94*b95 + 100852*b94* b143 + 77885*b143 + 9794*b95*b96 + 98248*b95*b144 + 77435*b144 + 104430* b96*b97 - 226404*b96*b145 + 155127*b145 - 34898*b97*b98 + 385506*b97*b146 - 580829*b146 - 236966*b98*b99 - 64340*b98*b147 + 144936*b147 - 184524* b99*b148 + 546395*b148 - 88042*b100*b101 + 163554*b100*b106 - 12528*b100* b107 - 354870*b100*b142 - 186384*b100*b149 + 278131*b149 - 31122*b101*b102 - 210828*b101*b108 + 36560*b101*b143 + 3360*b101*b150 - 260964*b150 - 23738*b102*b103 - 13436*b102*b109 - 319890*b102*b144 + 19546*b102*b151 + 62027*b151 - 128764*b103*b104 + 40950*b103*b110 + 82966*b103*b145 + 177528 *b103*b152 - 134706*b152 - 366180*b104*b105 - 478990*b104*b111 + 22508* b104*b146 + 48252*b104*b153 - 110279*b153 + 223756*b105*b106 - 257764*b105 *b112 - 250628*b105*b147 - 158816*b105*b154 + 110431*b154 - 52624*b106* b113 + 43780*b106*b148 - 212344*b106*b155 + 273230*b155 + 247158*b107*b108 + 197956*b107*b113 - 317620*b107*b114 + 298904*b107*b156 - 53476*b156 - 219594*b108*b109 + 239014*b108*b115 + 78708*b108*b157 - 165046*b157 - 39550*b109*b110 - 189208*b109*b116 - 12558*b109*b158 + 384400*b158 - 105146*b110*b111 - 356186*b110*b117 - 134056*b110*b159 + 338079*b159 - 272990*b111*b112 + 33840*b111*b118 + 196236*b111*b160 - 295309*b160 + 192420*b112*b113 + 205482*b112*b119 + 34920*b112*b161 - 35984*b161 - 202442*b113*b120 + 161556*b113*b162 - 323441*b162 + 230056*b114*b115 - 104322*b114*b120 - 94896*b114*b121 - 344982*b114*b163 + 33447*b163 - 134132*b115*b116 - 76502*b115*b122 + 121124*b115*b164 - 374777*b164 + 146952*b116*b117 - 417006*b116*b123 - 111948*b116*b165 + 35864*b165 + 167716*b117*b118 + 45738*b117*b124 + 250696*b117*b166 + 75916*b166 - 203120*b118*b119 - 161878*b118*b125 - 297662*b118*b167 + 65704*b167 - 96956*b119*b120 + 34240*b119*b126 - 38588*b119*b168 + 44977*b168 - 107586* b120*b127 + 253496*b120*b169 - 47576*b169 + 98238*b121*b122 - 219040*b121* b127 - 285684*b121*b128 - 542480*b121*b170 + 143713*b170 + 192688*b122* b123 - 36554*b122*b129 + 408684*b122*b171 - 263046*b171 - 58886*b123*b124 + 71614*b123*b130 - 92528*b123*b172 - 230947*b172 + 41198*b124*b125 - 332986*b124*b131 - 50560*b124*b173 - 499449*b173 - 38628*b125*b126 + 274450*b125*b132 - 382164*b125*b174 - 13326*b174 - 208020*b126*b127 - 125376*b126*b133 + 52118*b126*b175 - 697730*b175 - 115940*b127*b134 + 100494*b127*b176 - 350594*b176 - 452294*b128*b129 + 207810*b128*b134 - 23366*b128*b135 - 150956*b128*b177 - 53052*b177 + 144782*b129*b130 + 308908*b129*b136 - 312382*b129*b178 - 324160*b178 + 170080*b130*b131 + 126830*b130*b137 - 183504*b130*b179 - 87455*b179 - 161700*b131*b132 + 24876*b131*b138 + 472460*b131*b180 - 84631*b180 + 299710*b132*b133 - 146124*b132*b139 - 167002*b132*b181 + 130974*b181 - 192110*b133*b134 - 311430*b133*b140 - 44276*b133*b182 - 55811*b182 + 134428*b134*b141 + 186420*b134*b183 - 476908*b183 - 83216*b135*b136 - 208590*b135*b141 - 31356*b135*b142 + 375296*b135*b184 - 402412*b184 + 17602*b136*b137 - 53210 *b136*b143 - 231258*b136*b185 - 179070*b185 + 59544*b137*b138 - 76198*b137 *b144 - 35020*b137*b186 - 86258*b186 - 76062*b138*b139 - 168376*b138*b145 + 111876*b138*b187 - 194400*b187 - 52278*b139*b140 + 291574*b139*b146 - 271178*b139*b188 + 498146*b188 - 71600*b140*b141 - 197046*b140*b147 + 240944*b140*b189 + 239411*b189 - 390218*b141*b148 - 107960*b141*b190 - 139964*b190 - 157078*b142*b143 - 195168*b142*b148 - 17488*b142*b191 - 249792*b191 - 154730*b143*b144 + 71836*b143*b192 + 207131*b192 + 40858* b144*b145 + 256842*b144*b193 - 179519*b193 + 98712*b145*b146 - 138010*b145 *b194 - 437821*b194 + 125590*b146*b147 + 237768*b146*b195 - 86122*b195 - 23482*b147*b148 + 120034*b147*b196 + 239290*b196 - 343178*b148*b197 + 390393*b197 - 108884*b149*b150 - 251464*b149*b155 - 7760*b149*b156 + 116750*b149*b191 - 118520*b149*b198 - 38133*b198 + 123602*b150*b151 + 245004*b150*b157 - 53938*b150*b192 + 312784*b150*b199 - 551143*b199 + 95122*b151*b152 + 4106*b151*b158 - 82216*b151*b193 - 284214*b151*b200 - 287639*b200 + 82374*b152*b153 + 38598*b152*b159 - 60040*b152*b194 - 64170* b152*b201 + 50645*b201 + 116668*b153*b154 + 131546*b153*b160 + 55650*b153* b195 - 213932*b153*b202 - 3268*b202 + 157072*b154*b155 - 438372*b154*b161 + 102548*b154*b196 + 38*b154*b203 - 132873*b203 - 161458*b155*b162 - 113980*b155*b197 + 35714*b155*b204 + 122149*b204 + 65492*b156*b157 + 27186 *b156*b162 - 194502*b156*b163 - 82368*b156*b205 + 417949*b205 - 192884* b157*b158 + 253210*b157*b164 - 119438*b157*b206 - 429788*b206 - 199944* b158*b159 - 236396*b158*b165 - 131124*b158*b207 - 160910*b207 - 32690*b159 *b160 - 132048*b159*b166 - 216018*b159*b208 + 63876*b208 + 252918*b160* b161 + 126108*b160*b167 - 83500*b160*b209 + 288847*b209 + 59624*b161*b162 + 101894*b161*b168 + 60984*b161*b210 + 57024*b210 + 132798*b162*b169 + 427176*b162*b211 + 238681*b211 + 278904*b163*b164 - 21302*b163*b169 + 185840*b163*b170 + 29148*b163*b212 + 156757*b212 + 139120*b164*b165 + 168754*b164*b171 - 211558*b164*b213 + 97181*b213 - 28052*b165*b166 + 68018 *b165*b172 + 97530*b165*b214 + 33216*b214 - 126656*b166*b167 + 143274*b166 *b173 - 259046*b166*b215 + 380068*b215 + 28908*b167*b168 - 270504*b167* b174 + 408398*b167*b216 - 103228*b216 - 19224*b168*b169 + 105792*b168*b175 - 268736*b168*b217 + 242832*b217 - 171660*b169*b176 - 78956*b169*b218 + 132667*b218 + 46426*b170*b171 + 215860*b170*b176 - 99992*b170*b177 - 93080 *b170*b219 + 145441*b219 - 75538*b171*b172 + 84958*b171*b178 - 107192*b171 *b220 - 127787*b220 + 223824*b172*b173 + 507528*b172*b179 - 169410*b172* b221 + 301966*b221 + 542298*b173*b174 - 137640*b173*b180 + 277702*b173* b222 - 136869*b222 + 470668*b174*b175 - 186732*b174*b181 - 146914*b174* b223 - 198267*b223 + 406700*b175*b176 + 233382*b175*b182 + 126800*b175* b224 - 221778*b224 + 111484*b176*b183 + 38310*b176*b225 + 9089*b225 + 531202*b177*b178 + 25980*b177*b183 - 124146*b177*b184 - 75984*b177*b226 + 54208*b226 - 27640*b178*b179 + 187070*b178*b185 + 185112*b178*b227 - 427765*b227 - 358116*b179*b180 - 119790*b179*b186 + 356432*b179*b228 - 115888*b228 + 88606*b180*b181 + 147876*b180*b187 - 43924*b180*b229 - 10163 *b229 + 149246*b181*b182 - 212764*b181*b188 + 66698*b181*b230 + 122571* b230 + 339316*b182*b183 - 275334*b182*b189 - 290712*b182*b231 + 504512* b231 + 278068*b183*b190 + 12548*b183*b232 - 174084*b232 + 344552*b184*b185 + 163378*b184*b190 + 222174*b184*b191 - 176430*b184*b233 + 264376*b233 - 47736*b185*b186 + 150530*b185*b192 - 45018*b185*b234 + 123381*b234 + 42650 *b186*b187 + 106480*b186*b193 + 225932*b186*b235 - 131613*b235 + 13422* b187*b188 - 68902*b187*b194 + 141878*b187*b236 - 123873*b236 - 254264*b188 *b189 - 10722*b188*b195 - 260786*b188*b237 + 178421*b237 + 14524*b189*b190 - 301776*b189*b196 + 97084*b189*b238 - 223835*b238 - 195702*b190*b197 + 127620*b190*b239 - 253226*b239 - 123916*b191*b192 - 35004*b191*b197 + 337068*b191*b240 - 432869*b240 - 364944*b192*b193 - 93830*b192*b241 + 144056*b241 + 488856*b193*b194 - 45980*b193*b242 - 261364*b242 + 431410* b194*b195 + 222328*b194*b243 - 200709*b243 - 342762*b195*b196 - 199100* b195*b244 + 90061*b244 + 94394*b196*b197 - 151018*b196*b245 + 94828*b245 - 187316*b197*b246 - 121510*b246 + 15200*b198*b199 + 157616*b198*b204 + 116836*b198*b205 + 125612*b198*b240 - 220478*b198*b247 + 435509*b247 + 277956*b199*b200 + 321862*b199*b206 - 104154*b199*b241 + 278638*b199*b248 - 211552*b248 + 123516*b200*b201 + 52388*b200*b207 + 400976*b200*b242 + 4656*b200*b249 - 171997*b249 + 100926*b201*b202 - 224740*b201*b208 + 9166* b201*b243 - 45988*b201*b250 - 335631*b250 - 5376*b202*b203 + 6592*b202* b209 - 40004*b202*b244 + 158330*b202*b251 + 240753*b251 + 214174*b203*b204 - 94662*b203*b210 + 176630*b203*b245 - 25058*b203*b252 + 420457*b252 - 126484*b204*b211 - 23362*b204*b246 - 501956*b204*b253 + 648128*b253 + 118504*b205*b206 - 630582*b205*b211 - 201520*b205*b212 - 156768*b205*b254 + 358402*b254 + 480390*b206*b207 - 12704*b206*b213 + 70962*b206*b255 + 285770*b255 + 109848*b207*b208 + 88684*b207*b214 - 278366*b207*b256 - 429063*b256 - 200326*b208*b209 + 62482*b208*b215 + 341002*b208*b257 - 318569*b257 - 91104*b209*b210 - 29860*b209*b216 - 179496*b209*b258 + 164674*b258 - 31104*b210*b211 + 39490*b210*b217 + 2348*b210*b259 - 60238* b259 - 98228*b211*b218 - 18140*b211*b260 + 493317*b260 + 49094*b212*b213 - 141240*b212*b218 + 39096*b212*b219 - 88092*b212*b261 + 681912*b261 + 53846*b213*b214 + 176532*b213*b220 - 249572*b213*b262 + 138518*b262 + 29188*b214*b215 - 248284*b214*b221 - 87396*b214*b263 - 399880*b263 - 168262*b215*b216 - 250726*b215*b222 - 173772*b215*b264 + 215289*b264 - 65668*b216*b217 + 81828*b216*b223 - 19980*b216*b265 + 453605*b265 - 253650 *b217*b218 + 23382*b217*b224 + 39518*b217*b266 - 21032*b266 + 94512*b218* b225 + 212228*b218*b267 + 204296*b267 + 63762*b219*b220 - 216422*b219*b225 - 287084*b219*b226 + 202846*b219*b268 - 7531*b268 + 169600*b220*b221 - 38928*b220*b227 - 8200*b220*b269 - 188227*b269 + 49782*b221*b222 - 321576* b221*b228 - 84044*b221*b270 + 564*b270 + 161930*b222*b223 + 71462*b222* b229 - 36412*b222*b271 + 541279*b271 + 169906*b223*b224 + 185060*b223*b230 - 55276*b223*b272 + 360364*b272 + 300966*b224*b225 - 177640*b224*b231 + 142*b224*b273 + 293346*b273 - 11066*b225*b232 - 224478*b225*b274 + 386380* b274 + 112052*b226*b227 + 242446*b226*b232 + 77232*b226*b233 - 177078*b226 *b275 - 57135*b275 + 207174*b227*b228 + 274506*b227*b234 + 115614*b227* b276 - 6838*b276 + 153898*b228*b229 - 1094*b228*b235 - 163058*b228*b277 + 148708*b277 - 43214*b229*b230 + 13910*b229*b236 - 131806*b229*b278 + 213104*b278 - 384186*b230*b231 - 68044*b230*b237 - 1456*b230*b279 - 270725 *b279 - 133368*b231*b232 + 39210*b231*b238 - 62328*b231*b280 + 303477*b280 + 242172*b232*b239 - 4564*b232*b281 + 105078*b281 - 200542*b233*b234 - 101046*b233*b239 + 28248*b233*b240 - 156214*b233*b282 + 282958*b282 + 147918*b234*b235 - 278244*b234*b241 - 145382*b234*b283 + 432724*b283 + 10112*b235*b236 - 193284*b235*b242 + 73642*b235*b284 + 36054*b284 - 97568* b236*b237 - 62712*b236*b243 + 242126*b236*b285 - 106763*b285 + 68666*b237* b238 - 33746*b237*b244 + 34636*b237*b286 - 364982*b286 + 443202*b238*b239 - 44412*b238*b245 - 156080*b238*b287 + 263815*b287 - 120120*b239*b246 - 85376*b239*b288 + 89405*b288 + 75354*b240*b241 + 375308*b240*b246 - 75852* b240*b289 - 44735*b289 + 206050*b241*b242 - 93288*b241*b290 + 144732*b290 + 110932*b242*b243 + 44034*b242*b291 + 200224*b291 + 132256*b243*b244 - 10552*b243*b292 + 73629*b292 - 134610*b244*b245 + 95082*b244*b293 + 526322 *b293 + 71618*b245*b246 - 107864*b245*b294 + 375416*b294 + 126892*b246* b295 - 256596*b295 - 91258*b247*b248 - 293318*b247*b253 - 122786*b247*b254 - 70664*b247*b289 - 72514*b247*b296 + 233162*b248*b249 - 44932*b248*b255 - 89564*b248*b290 + 137058*b248*b297 + 112250*b249*b250 + 291124*b249* b256 - 326716*b249*b291 + 29518*b249*b298 + 131532*b250*b251 + 74172*b250* b257 + 312100*b250*b292 + 87196*b250*b299 - 351454*b251*b252 - 90324*b251* b258 - 285836*b251*b293 - 43754*b251*b300 - 157210*b252*b253 + 80652*b252* b259 - 18620*b252*b294 - 369224*b252*b301 - 347654*b253*b260 + 148312*b253 *b295 - 144430*b253*b302 - 150172*b254*b255 + 35392*b254*b260 - 377580* b254*b261 + 55110*b254*b303 + 123590*b255*b256 - 35972*b255*b262 - 535016* b255*b304 + 327386*b256*b257 + 408764*b256*b263 - 14372*b256*b305 + 285344 *b257*b258 - 25698*b257*b264 - 365068*b257*b306 + 37402*b258*b259 - 347740 *b258*b265 - 34534*b258*b307 - 177506*b259*b260 + 77770*b259*b266 + 99810* b259*b308 - 145528*b260*b267 - 333198*b260*b309 - 243968*b261*b262 - 390442*b261*b267 + 51404*b261*b268 - 315146*b261*b310 + 125058*b262*b263 + 135946*b262*b269 - 8528*b262*b311 + 163740*b263*b264 + 180484*b263*b270 + 9110*b263*b312 - 113804*b264*b265 - 95706*b264*b271 - 185338*b264*b313 + 12240*b265*b266 - 141042*b265*b272 - 296884*b265*b314 + 7742*b266*b267 + 106754*b266*b273 - 201960*b266*b315 + 128288*b267*b274 - 220880*b267* b316 - 105996*b268*b269 - 261754*b268*b274 + 272552*b268*b275 - 143990* b268*b317 + 90568*b269*b270 + 287356*b269*b276 - 23220*b269*b318 - 248960* b270*b271 + 198714*b270*b277 - 137890*b270*b319 - 298798*b271*b272 - 196866*b271*b278 - 205816*b271*b320 - 240470*b272*b273 - 110444*b272*b279 + 125302*b272*b321 + 102520*b273*b274 - 443216*b273*b280 - 112422*b273* b322 + 72270*b274*b281 - 589606*b274*b323 - 11002*b275*b276 - 170184*b275* b281 - 247848*b275*b282 + 447830*b275*b324 - 62520*b276*b277 - 97646*b276* b283 - 218126*b276*b325 + 120850*b277*b278 - 192842*b277*b284 - 198560* b277*b326 + 38444*b278*b279 - 167176*b278*b285 - 89654*b278*b327 + 61876* b279*b280 + 263066*b279*b286 + 289964*b279*b328 + 9222*b280*b281 + 72100* b280*b287 - 244608*b280*b329 - 71760*b281*b288 - 45140*b281*b330 - 467664* b282*b283 + 260924*b282*b288 - 42848*b282*b289 + 87734*b282*b331 + 57244* b283*b284 - 44830*b283*b290 - 167170*b283*b332 + 90760*b284*b285 + 46878* b284*b291 - 147790*b284*b333 + 196548*b285*b286 - 63606*b285*b292 - 85126* b285*b334 - 56822*b286*b287 - 143482*b286*b293 + 436018*b286*b335 - 227440 *b287*b288 - 96776*b287*b294 - 62612*b287*b336 + 312732*b288*b295 - 367890 *b288*b337 - 250072*b289*b290 + 142966*b289*b295 + 385940*b289*b338 + 90098*b290*b291 + 98192*b290*b339 - 10582*b291*b292 - 244160*b291*b340 - 377876*b292*b293 + 3258*b292*b341 - 90870*b293*b294 - 249662*b293*b342 - 207118*b294*b295 - 229584*b294*b343 - 10592*b295*b344 + 16892*b296*b297 + 346798*b296*b302 - 108162*b296*b303 + 168766*b296*b338 + 155736*b297*b298 + 90278*b297*b304 - 27080*b297*b339 + 105156*b298*b299 + 7140*b298*b305 - 276662*b298*b340 - 80754*b299*b300 + 46780*b299*b306 + 210838*b299*b341 - 148598*b300*b301 + 29534*b300*b307 + 66382*b300*b342 - 170978*b301*b302 - 193092*b301*b308 + 152672*b301*b343 - 269278*b302*b309 - 119148*b302* b344 - 187524*b303*b304 + 1790*b303*b309 - 253084*b303*b310 + 131546*b304* b305 + 57318*b304*b311 - 257894*b305*b306 + 5600*b305*b312 + 63990*b306* b307 + 440532*b306*b313 + 103154*b307*b308 + 84924*b307*b314 + 188812*b308 *b309 - 311914*b308*b315 + 222436*b309*b316 + 173406*b310*b311 - 27930* b310*b316 - 63836*b310*b317 + 43160*b311*b312 + 144920*b311*b318 + 214312* b312*b313 + 211126*b312*b319 - 524308*b313*b314 - 122820*b313*b320 + 104236*b314*b315 + 7226*b314*b321 + 106756*b315*b316 - 248720*b315*b322 + 215870*b316*b323 - 159184*b317*b318 - 51664*b317*b323 - 322968*b317*b324 - 241346*b318*b319 - 109334*b318*b325 - 47538*b319*b320 + 96910*b319*b326 + 140590*b320*b321 - 482920*b320*b327 - 173114*b321*b322 - 103488*b321* b328 + 86370*b322*b323 + 24088*b322*b329 + 71156*b323*b330 - 284136*b324* b325 + 1398*b324*b330 + 478688*b324*b331 - 19360*b325*b326 + 94978*b325* b332 - 69428*b326*b327 - 196922*b326*b333 - 33028*b327*b328 - 239384*b327* b334 - 122178*b328*b329 + 131792*b328*b335 + 126404*b329*b330 + 407298* b329*b336 - 30778*b330*b337 + 227126*b331*b332 - 219286*b331*b337 - 73274* b331*b338 - 144168*b332*b333 + 59776*b332*b339 + 147068*b333*b334 + 77446* b333*b340 - 24470*b334*b335 - 107716*b334*b341 - 101274*b335*b336 - 102834 *b335*b342 - 3824*b336*b337 + 46782*b336*b343 - 375856*b337*b344 - 83012* b338*b339 - 248376*b338*b344 + 66832*b339*b340 + 338092*b340*b341 + 255092 *b341*b342 - 69830*b342*b343 - 151802*b343*b344 - objvar =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% maximizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91