MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance trigx

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
0.09563139 p1 ( gdx sol )
(infeas: 7e-12)
Other points (infeas > 1e-08)  
Dual Bounds
0.09563139 (COUENNE)
0.09563139 (LINDO)
0.09563103 (SCIP)
References Pinter, J D, Nonlinear optimization with GAMS/LGO, Journal of Global Optimization, 38:1, 2007, 79-101.
Source GAMS Model Library model trigx
Application Test Problem
Added to library 18 Aug 2014
Problem type NLP
#Variables 2
#Binary Variables 0
#Integer Variables 0
#Nonlinear Variables 2
#Nonlinear Binary Variables 0
#Nonlinear Integer Variables 0
Objective Sense min
Objective type quadratic
Objective curvature convex
#Nonzeros in Objective 2
#Nonlinear Nonzeros in Objective 2
#Constraints 2
#Linear Constraints 0
#Quadratic Constraints 0
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 2
Operands in Gen. Nonlin. Functions cos sin
Constraints curvature indefinite
#Nonzeros in Jacobian 4
#Nonlinear Nonzeros in Jacobian 4
#Nonzeros in (Upper-Left) Hessian of Lagrangian 4
#Nonzeros in Diagonal of Hessian of Lagrangian 2
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 2
Maximal blocksize in Hessian of Lagrangian 2
Average blocksize in Hessian of Lagrangian 2.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 2.0000e+00
Maximal coefficient 5.0000e+00
Infeasibility of initial point 1
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*          3        3        0        0        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*          3        3        0        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*          7        1        6        0
*
*  Solve m using NLP minimizing objvar;


Variables  objvar,x2,x3;

Equations  e1,e2,e3;


e1.. -(x2*x2 + x3*x3) + objvar =E= 0;

e2.. x2 - sin(2*x2 + 3*x3) - cos(3*x2 - 5*x3) =E= 0;

e3.. x3 - sin(x2 - 2*x3) + cos(x2 + 3*x3) =E= 0;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set NLP $set NLP NLP
Solve m using %NLP% minimizing objvar;


Last updated: 2024-12-17 Git hash: 8eaceb91
Imprint / Privacy Policy / License: CC-BY 4.0