MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance trigx
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 0.09563139 (COUENNE) 0.09563139 (LINDO) 0.09563103 (SCIP) |
Referencesⓘ | Pinter, J D, Nonlinear optimization with GAMS/LGO, Journal of Global Optimization, 38:1, 2007, 79-101. |
Sourceⓘ | GAMS Model Library model trigx |
Applicationⓘ | Test Problem |
Added to libraryⓘ | 18 Aug 2014 |
Problem typeⓘ | NLP |
#Variablesⓘ | 2 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 2 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | quadratic |
Objective curvatureⓘ | convex |
#Nonzeros in Objectiveⓘ | 2 |
#Nonlinear Nonzeros in Objectiveⓘ | 2 |
#Constraintsⓘ | 2 |
#Linear Constraintsⓘ | 0 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 2 |
Operands in Gen. Nonlin. Functionsⓘ | cos sin |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 4 |
#Nonlinear Nonzeros in Jacobianⓘ | 4 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 4 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 2 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 2 |
Average blocksize in Hessian of Lagrangianⓘ | 2.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.0000e+00 |
Maximal coefficientⓘ | 5.0000e+00 |
Infeasibility of initial pointⓘ | 1 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 3 3 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 3 3 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 7 1 6 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3; Equations e1,e2,e3; e1.. -(x2*x2 + x3*x3) + objvar =E= 0; e2.. x2 - sin(2*x2 + 3*x3) - cos(3*x2 - 5*x3) =E= 0; e3.. x3 - sin(x2 - 2*x3) + cos(x2 + 3*x3) =E= 0; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91