MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance tspn05
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 191.25408440 (ANTIGONE) 191.25520750 (BARON) 191.25370010 (COUENNE) 191.25366890 (LINDO) 191.25519700 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Gentilini, Iacopo, Margot, François, and Shimada, Kenji, The Traveling Salesman Problem with Neighborhoods: MINLP Solution, Optimization Methods and Software, 28:2, 2013, 364-378. |
Sourceⓘ | tspn5Couenne.nl from minlp.org model 124 |
Applicationⓘ | Traveling Salesman Problem with Neighborhoods |
Added to libraryⓘ | 21 Feb 2014 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 20 |
#Binary Variablesⓘ | 10 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 20 |
#Nonlinear Binary Variablesⓘ | 10 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | nonlinear |
Objective curvatureⓘ | indefinite |
#Nonzeros in Objectiveⓘ | 20 |
#Nonlinear Nonzeros in Objectiveⓘ | 20 |
#Constraintsⓘ | 10 |
#Linear Constraintsⓘ | 5 |
#Quadratic Constraintsⓘ | 5 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | mul sqr sqrt |
Constraints curvatureⓘ | convex |
#Nonzeros in Jacobianⓘ | 30 |
#Nonlinear Nonzeros in Jacobianⓘ | 10 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 180 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 10 |
#Blocks in Hessian of Lagrangianⓘ | 1 |
Minimal blocksize in Hessian of Lagrangianⓘ | 20 |
Maximal blocksize in Hessian of Lagrangianⓘ | 20 |
Average blocksize in Hessian of Lagrangianⓘ | 20.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 8.2645e-03 |
Maximal coefficientⓘ | 6.1778e+01 |
Infeasibility of initial pointⓘ | 2 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 11 6 0 5 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 21 11 10 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 51 21 30 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,b11,b12,b13,b14,b15,b16,b17,b18,b19 ,b20,objvar; Binary Variables b11,b12,b13,b14,b15,b16,b17,b18,b19,b20; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11; e1.. sqrt(sqr(x1 - x3) + sqr(x2 - x4))*b11 + sqrt(sqr(x1 - x5) + sqr(x2 - x6))* b12 + sqrt(sqr(x1 - x7) + sqr(x2 - x8))*b13 + sqrt(sqr(x1 - x9) + sqr(x2 - x10))*b14 + sqrt(sqr(x3 - x5) + sqr(x4 - x6))*b15 + sqrt(sqr(x3 - x7) + sqr(x4 - x8))*b16 + sqrt(sqr(x3 - x9) + sqr(x4 - x10))*b17 + sqrt(sqr( x5 - x7) + sqr(x6 - x8))*b18 + sqrt(sqr(x5 - x9) + sqr(x6 - x10))*b19 + sqrt(sqr(x7 - x9) + sqr(x8 - x10))*b20 - objvar =E= 0; e2.. 0.444444444444444*sqr(x1) - 61.7777777777778*x1 + 0.00826446280991736*sqr( x2) - 1.25619834710744*x2 =L= -2193.51331496786; e3.. 0.0110803324099723*sqr(x3) - 2.58171745152355*x3 + 0.0330578512396694*sqr( x4) - 2.87603305785124*x4 =L= -211.938760559511; e4.. 0.0177777777777778*sqr(x5) - 1.68888888888889*x5 + 0.0204081632653061*sqr( x6) - 2.48979591836735*x6 =L= -115.049886621315; e5.. 0.0204081632653061*sqr(x7) - 4.04081632653061*x7 + 0.25*sqr(x8) - 57.5*x8 =L= -3505.27040816327; e6.. 0.16*sqr(x9) - 27.04*x9 + 0.0493827160493827*sqr(x10) - 7.95061728395062* x10 =L= -1461.45234567901; e7.. b11 + b12 + b13 + b14 =E= 2; e8.. b11 + b15 + b16 + b17 =E= 2; e9.. b12 + b15 + b18 + b19 =E= 2; e10.. b13 + b16 + b18 + b20 =E= 2; e11.. b14 + b17 + b19 + b20 =E= 2; * set non-default bounds x1.lo = 68; x1.up = 71; x2.lo = 65; x2.up = 87; x3.lo = 107; x3.up = 126; x4.lo = 38; x4.up = 49; x5.lo = 40; x5.up = 55; x6.lo = 54; x6.up = 68; x7.lo = 92; x7.up = 106; x8.lo = 113; x8.up = 117; x9.lo = 82; x9.up = 87; x10.lo = 76; x10.up = 85; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91