MINLPLib

A Library of Mixed-Integer and Continuous Nonlinear Programming Instances

Home // Instances // Documentation // Download // Statistics


Instance tspn08

Formats ams gms mod nl osil py
Primal Bounds (infeas ≤ 1e-08)
290.56685390 p1 ( gdx sol )
(infeas: 0)
Other points (infeas > 1e-08)  
Dual Bounds
266.38129820 (ANTIGONE)
290.56685390 (BARON)
285.75075350 (COUENNE)
288.68966410 (GUROBI)
264.99874910 (LINDO)
284.90970650 (SCIP)
0.00000000 (SHOT)
289.64297140 (XPRESS)
References Gentilini, Iacopo, Margot, François, and Shimada, Kenji, The Traveling Salesman Problem with Neighborhoods: MINLP Solution, Optimization Methods and Software, 28:2, 2013, 364-378.
Source tspn8Couenne.nl from minlp.org model 124
Application Traveling Salesman Problem with Neighborhoods
Added to library 21 Feb 2014
Problem type MBNLP
#Variables 44
#Binary Variables 28
#Integer Variables 0
#Nonlinear Variables 44
#Nonlinear Binary Variables 28
#Nonlinear Integer Variables 0
Objective Sense min
Objective type nonlinear
Objective curvature indefinite
#Nonzeros in Objective 44
#Nonlinear Nonzeros in Objective 44
#Constraints 18
#Linear Constraints 10
#Quadratic Constraints 8
#Polynomial Constraints 0
#Signomial Constraints 0
#General Nonlinear Constraints 0
Operands in Gen. Nonlin. Functions mul sqr sqrt
Constraints curvature convex
#Nonzeros in Jacobian 92
#Nonlinear Nonzeros in Jacobian 16
#Nonzeros in (Upper-Left) Hessian of Lagrangian 480
#Nonzeros in Diagonal of Hessian of Lagrangian 16
#Blocks in Hessian of Lagrangian 1
Minimal blocksize in Hessian of Lagrangian 44
Maximal blocksize in Hessian of Lagrangian 44
Average blocksize in Hessian of Lagrangian 44.0
#Semicontinuities 0
#Nonlinear Semicontinuities 0
#SOS type 1 0
#SOS type 2 0
Minimal coefficient 5.9172e-03
Maximal coefficient 8.5432e+00
Infeasibility of initial point 2
Sparsity Jacobian Sparsity of Objective Gradient and Jacobian
Sparsity Hessian of Lagrangian Sparsity of Hessian of Lagrangian

$offlisting
*  
*  Equation counts
*      Total        E        G        L        N        X        C        B
*         19        9        0       10        0        0        0        0
*  
*  Variable counts
*                   x        b        i      s1s      s2s       sc       si
*      Total     cont   binary  integer     sos1     sos2    scont     sint
*         45       17       28        0        0        0        0        0
*  FX      0
*  
*  Nonzero counts
*      Total    const       NL      DLL
*        137       77       60        0
*
*  Solve m using MINLP minimizing objvar;


Variables  x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,b17,b18,b19
          ,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31,b32,b33,b34,b35,b36
          ,b37,b38,b39,b40,b41,b42,b43,b44,objvar;

Positive Variables  x8,x13;

Binary Variables  b17,b18,b19,b20,b21,b22,b23,b24,b25,b26,b27,b28,b29,b30,b31
          ,b32,b33,b34,b35,b36,b37,b38,b39,b40,b41,b42,b43,b44;

Equations  e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19;


e1.. sqrt(sqr(x1 - x3) + sqr(x2 - x4))*b17 + sqrt(sqr(x1 - x5) + sqr(x2 - x6))*
     b18 + sqrt(sqr(x1 - x7) + sqr(x2 - x8))*b19 + sqrt(sqr(x1 - x9) + sqr(x2
      - x10))*b20 + sqrt(sqr(x1 - x11) + sqr(x2 - x12))*b21 + sqrt(sqr(x1 - x13
     ) + sqr(x2 - x14))*b22 + sqrt(sqr(x1 - x15) + sqr(x2 - x16))*b23 + sqrt(
     sqr(x3 - x5) + sqr(x4 - x6))*b24 + sqrt(sqr(x3 - x7) + sqr(x4 - x8))*b25
      + sqrt(sqr(x3 - x9) + sqr(x4 - x10))*b26 + sqrt(sqr(x3 - x11) + sqr(x4 - 
     x12))*b27 + sqrt(sqr(x3 - x13) + sqr(x4 - x14))*b28 + sqrt(sqr(x3 - x15)
      + sqr(x4 - x16))*b29 + sqrt(sqr(x5 - x7) + sqr(x6 - x8))*b30 + sqrt(sqr(
     x5 - x9) + sqr(x6 - x10))*b31 + sqrt(sqr(x5 - x11) + sqr(x6 - x12))*b32 + 
     sqrt(sqr(x5 - x13) + sqr(x6 - x14))*b33 + sqrt(sqr(x5 - x15) + sqr(x6 - 
     x16))*b34 + sqrt(sqr(x7 - x9) + sqr(x8 - x10))*b35 + sqrt(sqr(x7 - x11) + 
     sqr(x8 - x12))*b36 + sqrt(sqr(x7 - x13) + sqr(x8 - x14))*b37 + sqrt(sqr(x7
      - x15) + sqr(x8 - x16))*b38 + sqrt(sqr(x9 - x11) + sqr(x10 - x12))*b39 + 
     sqrt(sqr(x9 - x13) + sqr(x10 - x14))*b40 + sqrt(sqr(x9 - x15) + sqr(x10 - 
     x16))*b41 + sqrt(sqr(x11 - x13) + sqr(x12 - x14))*b42 + sqrt(sqr(x11 - x15
     ) + sqr(x12 - x16))*b43 + sqrt(sqr(x13 - x15) + sqr(x14 - x16))*b44
      - objvar =E= 0;

e2.. 0.013840830449827*sqr(x1) - 0.318339100346021*x1 + 0.0236686390532544*sqr(
     x2) - 2.9112426035503*x2 =L= -90.3511598861612;

e3.. 0.0493827160493827*sqr(x3) - 3.30864197530864*x3 + 0.04*sqr(x4) - 1.36*x4
      =L= -65.9797530864197;

e4.. 0.0330578512396694*sqr(x5) - 0.694214876033058*x5 + 0.0493827160493827*
     sqr(x6) - 8.54320987654321*x6 =L= -372.138455259667;

e5.. 0.0330578512396694*sqr(x7) - 6.57851239669422*x7 + 0.013840830449827*sqr(
     x8) - 0.235294117647059*x8 =L= -327.280991735537;

e6.. 0.00826446280991736*sqr(x9) - 0.446280991735537*x9 + 0.013840830449827*
     sqr(x10) - 2.92041522491349*x10 =L= -159.076696502617;

e7.. 0.0330578512396694*sqr(x11) - 4.13223140495868*x11 + 0.013840830449827*
     sqr(x12) - 3.22491349480969*x12 =L= -315.983442477623;

e8.. 0.00756143667296786*sqr(x13) - 0.173913043478261*x13 + 0.0123456790123457*
     sqr(x14) - 0.395061728395062*x14 =L= -3.16049382716049;

e9.. 0.00591715976331361*sqr(x15) - 0.72189349112426*x15 + 0.00694444444444444*
     sqr(x16) - 1.38888888888889*x16 =L= -90.4621959237344;

e10..    b17 + b18 + b19 + b20 + b21 + b22 + b23 =E= 2;

e11..    b17 + b24 + b25 + b26 + b27 + b28 + b29 =E= 2;

e12..    b18 + b24 + b30 + b31 + b32 + b33 + b34 =E= 2;

e13..    b19 + b25 + b30 + b35 + b36 + b37 + b38 =E= 2;

e14..    b20 + b26 + b31 + b35 + b39 + b40 + b41 =E= 2;

e15..    b21 + b27 + b32 + b36 + b39 + b42 + b43 =E= 2;

e16..    b22 + b28 + b33 + b37 + b40 + b42 + b44 =E= 2;

e17..    b23 + b29 + b34 + b38 + b41 + b43 + b44 =E= 2;

e18..    b18 + b20 + b21 + b23 + b31 + b32 + b34 + b39 + b41 + b43 =L= 4;

e19..    b17 + b18 + b19 + b22 + b24 + b25 + b28 + b30 + b33 + b37 =L= 4;

* set non-default bounds
x1.lo = 3; x1.up = 20;
x2.lo = 55; x2.up = 68;
x3.lo = 29; x3.up = 38;
x4.lo = 12; x4.up = 22;
x5.lo = 5; x5.up = 16;
x6.lo = 82; x6.up = 91;
x7.lo = 94; x7.up = 105;
x8.up = 17;
x9.lo = 16; x9.up = 38;
x10.lo = 97; x10.up = 114;
x11.lo = 57; x11.up = 68;
x12.lo = 108; x12.up = 125;
x13.up = 23;
x14.lo = 7; x14.up = 25;
x15.lo = 48; x15.up = 74;
x16.lo = 88; x16.up = 112;

Model m / all /;

m.limrow=0; m.limcol=0;
m.tolproj=0.0;

$if NOT '%gams.u1%' == '' $include '%gams.u1%'

$if not set MINLP $set MINLP MINLP
Solve m using %MINLP% minimizing objvar;


Last updated: 2025-08-07 Git hash: e62cedfc
Imprint / Privacy Policy / License: CC-BY 4.0