MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance wastewater05m2
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 229.70083910 (ANTIGONE) 229.70083910 (BARON) 149.93470460 (COUENNE) 229.70083940 (GUROBI) 229.70083930 (LINDO) 229.70083940 (SCIP) |
Referencesⓘ | Castro, Pedro M, Matos, Henrique A, and Novais, Augusto Q, An efficient heuristic procedure for the optimal design of wastewater treatment systems, Resources, Conservation and Recycling, 50:2, 2007, 158-185. Castro, Pedro M, Teles, João P, and Novais, Augusto Q, Linear program-based algorithm for the optimal design of wastewater treatment systems, Clean Technologies and Environmental Policy, 11:1, 2009, 83-93. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/castro_etal_2007_wts_Ex05_M2.gms |
Applicationⓘ | Waste Water Treatment |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 133 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 24 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 151 |
#Linear Constraintsⓘ | 103 |
#Quadratic Constraintsⓘ | 48 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 547 |
#Nonlinear Nonzeros in Jacobianⓘ | 96 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 96 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 8 |
Maximal blocksize in Hessian of Lagrangianⓘ | 8 |
Average blocksize in Hessian of Lagrangianⓘ | 8.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e-03 |
Maximal coefficientⓘ | 5.4871e+05 |
Infeasibility of initial pointⓘ | 5.487e+05 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 152 140 0 12 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 134 134 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 551 455 96 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138,e139,e140,e141,e142 ,e143,e144,e145,e146,e147,e148,e149,e150,e151,e152; e1.. - x26 - x27 - x28 + objvar =E= 0; e2.. - x10 - x16 - x17 - x18 =E= -13.1; e3.. - x11 - x19 - x20 - x21 =E= -32.7; e4.. - x12 - x22 - x23 - x24 =E= -56.5; e5.. - x1 - x4 - x7 - x16 - x19 - x22 + x26 =E= 0; e6.. - x2 - x5 - x8 - x17 - x20 - x23 + x27 =E= 0; e7.. - x3 - x6 - x9 - x18 - x21 - x24 + x28 =E= 0; e8.. - x1 - x2 - x3 - x13 + x26 =E= 0; e9.. - x4 - x5 - x6 - x14 + x27 =E= 0; e10.. - x7 - x8 - x9 - x15 + x28 =E= 0; e11.. - x10 - x11 - x12 - x13 - x14 - x15 + x25 =E= 0; e12.. - x56 - x74 - x77 - x80 =E= -131; e13.. - x57 - x75 - x78 - x81 =E= -5109; e14.. - x58 - x76 - x79 - x82 =E= -327.5; e15.. - x59 - x83 - x86 - x89 =E= -3597; e16.. - x60 - x84 - x87 - x90 =E= -548706; e17.. - x61 - x85 - x88 - x91 =E= -1308; e18.. - x62 - x92 - x95 - x98 =E= -5650; e19.. - x63 - x93 - x96 - x99 =E= -1412.5; e20.. - x64 - x94 - x97 - x100 =E= -1977.5; e21.. - x74 + 131*x125 =E= 0; e22.. - x75 + 5109*x125 =E= 0; e23.. - x76 + 327.5*x125 =E= 0; e24.. - x77 + 131*x126 =E= 0; e25.. - x78 + 5109*x126 =E= 0; e26.. - x79 + 327.5*x126 =E= 0; e27.. - x80 + 131*x127 =E= 0; e28.. - x81 + 5109*x127 =E= 0; e29.. - x82 + 327.5*x127 =E= 0; e30.. - x83 + 3597*x128 =E= 0; e31.. - x84 + 548706*x128 =E= 0; e32.. - x85 + 1308*x128 =E= 0; e33.. - x86 + 3597*x129 =E= 0; e34.. - x87 + 548706*x129 =E= 0; e35.. - x88 + 1308*x129 =E= 0; e36.. - x89 + 3597*x130 =E= 0; e37.. - x90 + 548706*x130 =E= 0; e38.. - x91 + 1308*x130 =E= 0; e39.. - x92 + 5650*x131 =E= 0; e40.. - x93 + 1412.5*x131 =E= 0; e41.. - x94 + 1977.5*x131 =E= 0; e42.. - x95 + 5650*x132 =E= 0; e43.. - x96 + 1412.5*x132 =E= 0; e44.. - x97 + 1977.5*x132 =E= 0; e45.. - x98 + 5650*x133 =E= 0; e46.. - x99 + 1412.5*x133 =E= 0; e47.. - x100 + 1977.5*x133 =E= 0; e48.. - x56 + 131*x119 =E= 0; e49.. - x57 + 5109*x119 =E= 0; e50.. - x58 + 327.5*x119 =E= 0; e51.. - x59 + 3597*x120 =E= 0; e52.. - x60 + 548706*x120 =E= 0; e53.. - x61 + 1308*x120 =E= 0; e54.. - x62 + 5650*x121 =E= 0; e55.. - x63 + 1412.5*x121 =E= 0; e56.. - x64 + 1977.5*x121 =E= 0; e57.. - x16 + 13.1*x125 =E= 0; e58.. - x17 + 13.1*x126 =E= 0; e59.. - x18 + 13.1*x127 =E= 0; e60.. - x19 + 32.7*x128 =E= 0; e61.. - x20 + 32.7*x129 =E= 0; e62.. - x21 + 32.7*x130 =E= 0; e63.. - x22 + 56.5*x131 =E= 0; e64.. - x23 + 56.5*x132 =E= 0; e65.. - x24 + 56.5*x133 =E= 0; e66.. - x10 + 13.1*x119 =E= 0; e67.. - x11 + 32.7*x120 =E= 0; e68.. - x12 + 56.5*x121 =E= 0; e69.. x119 + x125 + x126 + x127 =E= 1; e70.. x120 + x128 + x129 + x130 =E= 1; e71.. x121 + x131 + x132 + x133 =E= 1; e72.. - 20000*x26 + x29 + x38 + x47 + x74 + x83 + x92 =L= 0; e73.. - 20000*x26 + x30 + x39 + x48 + x75 + x84 + x93 =L= 0; e74.. - 20000*x26 + x31 + x40 + x49 + x76 + x85 + x94 =L= 0; e75.. - 20000*x27 + x32 + x41 + x50 + x77 + x86 + x95 =L= 0; e76.. - 20000*x27 + x33 + x42 + x51 + x78 + x87 + x96 =L= 0; e77.. - 20000*x27 + x34 + x43 + x52 + x79 + x88 + x97 =L= 0; e78.. - 20000*x28 + x35 + x44 + x53 + x80 + x89 + x98 =L= 0; e79.. - 20000*x28 + x36 + x45 + x54 + x81 + x90 + x99 =L= 0; e80.. - 20000*x28 + x37 + x46 + x55 + x82 + x91 + x100 =L= 0; e81.. x29 + x38 + x47 + x74 + x83 + x92 - x101 =E= 0; e82.. 0.001*x30 + 0.001*x39 + 0.001*x48 + 0.001*x75 + 0.001*x84 + 0.001*x93 - x102 =E= 0; e83.. x31 + x40 + x49 + x76 + x85 + x94 - x103 =E= 0; e84.. 0.1*x32 + 0.1*x41 + 0.1*x50 + 0.1*x77 + 0.1*x86 + 0.1*x95 - x104 =E= 0 ; e85.. 0.1*x33 + 0.1*x42 + 0.1*x51 + 0.1*x78 + 0.1*x87 + 0.1*x96 - x105 =E= 0 ; e86.. 0.03*x34 + 0.03*x43 + 0.03*x52 + 0.03*x79 + 0.03*x88 + 0.03*x97 - x106 =E= 0; e87.. 0.05*x35 + 0.05*x44 + 0.05*x53 + 0.05*x80 + 0.05*x89 + 0.05*x98 - x107 =E= 0; e88.. x36 + x45 + x54 + x81 + x90 + x99 - x108 =E= 0; e89.. 0.8*x37 + 0.8*x46 + 0.8*x55 + 0.8*x82 + 0.8*x91 + 0.8*x100 - x109 =E= 0; e90.. - x29 - x32 - x35 - x65 + x101 =E= 0; e91.. - x30 - x33 - x36 - x66 + x102 =E= 0; e92.. - x31 - x34 - x37 - x67 + x103 =E= 0; e93.. - x38 - x41 - x44 - x68 + x104 =E= 0; e94.. - x39 - x42 - x45 - x69 + x105 =E= 0; e95.. - x40 - x43 - x46 - x70 + x106 =E= 0; e96.. - x47 - x50 - x53 - x71 + x107 =E= 0; e97.. - x48 - x51 - x54 - x72 + x108 =E= 0; e98.. - x49 - x52 - x55 - x73 + x109 =E= 0; e99.. x101*x110 - x29 =E= 0; e100.. x102*x110 - x30 =E= 0; e101.. x103*x110 - x31 =E= 0; e102.. x101*x111 - x32 =E= 0; e103.. x102*x111 - x33 =E= 0; e104.. x103*x111 - x34 =E= 0; e105.. x101*x112 - x35 =E= 0; e106.. x102*x112 - x36 =E= 0; e107.. x103*x112 - x37 =E= 0; e108.. x104*x113 - x38 =E= 0; e109.. x105*x113 - x39 =E= 0; e110.. x106*x113 - x40 =E= 0; e111.. x104*x114 - x41 =E= 0; e112.. x105*x114 - x42 =E= 0; e113.. x106*x114 - x43 =E= 0; e114.. x104*x115 - x44 =E= 0; e115.. x105*x115 - x45 =E= 0; e116.. x106*x115 - x46 =E= 0; e117.. x107*x116 - x47 =E= 0; e118.. x108*x116 - x48 =E= 0; e119.. x109*x116 - x49 =E= 0; e120.. x107*x117 - x50 =E= 0; e121.. x108*x117 - x51 =E= 0; e122.. x109*x117 - x52 =E= 0; e123.. x107*x118 - x53 =E= 0; e124.. x108*x118 - x54 =E= 0; e125.. x109*x118 - x55 =E= 0; e126.. x101*x122 - x65 =E= 0; e127.. x102*x122 - x66 =E= 0; e128.. x103*x122 - x67 =E= 0; e129.. x104*x123 - x68 =E= 0; e130.. x105*x123 - x69 =E= 0; e131.. x106*x123 - x70 =E= 0; e132.. x107*x124 - x71 =E= 0; e133.. x108*x124 - x72 =E= 0; e134.. x109*x124 - x73 =E= 0; e135.. x26*x110 - x1 =E= 0; e136.. x26*x111 - x2 =E= 0; e137.. x26*x112 - x3 =E= 0; e138.. x27*x113 - x4 =E= 0; e139.. x27*x114 - x5 =E= 0; e140.. x27*x115 - x6 =E= 0; e141.. x28*x116 - x7 =E= 0; e142.. x28*x117 - x8 =E= 0; e143.. x28*x118 - x9 =E= 0; e144.. x26*x122 - x13 =E= 0; e145.. x27*x123 - x14 =E= 0; e146.. x28*x124 - x15 =E= 0; e147.. x110 + x111 + x112 + x122 =E= 1; e148.. x113 + x114 + x115 + x123 =E= 1; e149.. x116 + x117 + x118 + x124 =E= 1; e150.. - 2*x25 + x56 + x59 + x62 + x65 + x68 + x71 =L= 0; e151.. - 2*x25 + x57 + x60 + x63 + x66 + x69 + x72 =L= 0; e152.. - 5*x25 + x58 + x61 + x64 + x67 + x70 + x73 =L= 0; * set non-default bounds x1.up = 1000000; x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; x47.up = 1000000; x48.up = 1000000; x49.up = 1000000; x50.up = 1000000; x51.up = 1000000; x52.up = 1000000; x53.up = 1000000; x54.up = 1000000; x55.up = 1000000; x56.up = 1000000; x57.up = 1000000; x58.up = 1000000; x59.up = 1000000; x60.up = 1000000; x61.up = 1000000; x62.up = 1000000; x63.up = 1000000; x64.up = 1000000; x65.up = 1000000; x66.up = 1000000; x67.up = 1000000; x68.up = 1000000; x69.up = 1000000; x70.up = 1000000; x71.up = 1000000; x72.up = 1000000; x73.up = 1000000; x74.up = 1000000; x75.up = 1000000; x76.up = 1000000; x77.up = 1000000; x78.up = 1000000; x79.up = 1000000; x80.up = 1000000; x81.up = 1000000; x82.up = 1000000; x83.up = 1000000; x84.up = 1000000; x85.up = 1000000; x86.up = 1000000; x87.up = 1000000; x88.up = 1000000; x89.up = 1000000; x90.up = 1000000; x91.up = 1000000; x92.up = 1000000; x93.up = 1000000; x94.up = 1000000; x95.up = 1000000; x96.up = 1000000; x97.up = 1000000; x98.up = 1000000; x99.up = 1000000; x100.up = 1000000; x101.up = 1000000; x102.up = 1000000; x103.up = 1000000; x104.up = 1000000; x105.up = 1000000; x106.up = 1000000; x107.up = 1000000; x108.up = 1000000; x109.up = 1000000; x110.up = 1000000; x111.up = 1000000; x112.up = 1000000; x113.up = 1000000; x114.up = 1000000; x115.up = 1000000; x116.up = 1000000; x117.up = 1000000; x118.up = 1000000; x119.up = 1000000; x120.up = 1000000; x121.up = 1000000; x122.up = 1000000; x123.up = 1000000; x124.up = 1000000; x125.up = 1000000; x126.up = 1000000; x127.up = 1000000; x128.up = 1000000; x129.up = 1000000; x130.up = 1000000; x131.up = 1000000; x132.up = 1000000; x133.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91