MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance wastewater12m1
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 1201.03846000 (ANTIGONE) 1201.03827900 (BARON) 945.24787590 (COUENNE) 1201.03846000 (GUROBI) 811.02148500 (LINDO) 1200.91857300 (SCIP) |
Referencesⓘ | Castro, Pedro M, Matos, Henrique A, and Novais, Augusto Q, An efficient heuristic procedure for the optimal design of wastewater treatment systems, Resources, Conservation and Recycling, 50:2, 2007, 158-185. Castro, Pedro M, Teles, João P, and Novais, Augusto Q, Linear program-based algorithm for the optimal design of wastewater treatment systems, Clean Technologies and Environmental Policy, 11:1, 2009, 83-93. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/castro_etal_2007_wts_Ex12_M1.gms |
Applicationⓘ | Waste Water Treatment |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 196 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 140 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 10 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 57 |
#Linear Constraintsⓘ | 46 |
#Quadratic Constraintsⓘ | 11 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 677 |
#Nonlinear Nonzeros in Jacobianⓘ | 240 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 240 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 20 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 12 |
Average blocksize in Hessian of Lagrangianⓘ | 7.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 5.0000e-02 |
Maximal coefficientⓘ | 3.3000e+02 |
Infeasibility of initial pointⓘ | 350 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 58 47 0 11 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 197 197 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 688 448 240 0 * * Solve m using NLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70 ,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86,x87 ,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102,x103 ,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115,x116 ,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127,x128,x129 ,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140,x141,x142 ,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153,x154,x155 ,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166,x167,x168 ,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179,x180,x181 ,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192,x193,x194 ,x195,x196,objvar; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122,x123,x124,x125,x126,x127 ,x128,x129,x130,x131,x132,x133,x134,x135,x136,x137,x138,x139,x140 ,x141,x142,x143,x144,x145,x146,x147,x148,x149,x150,x151,x152,x153 ,x154,x155,x156,x157,x158,x159,x160,x161,x162,x163,x164,x165,x166 ,x167,x168,x169,x170,x171,x172,x173,x174,x175,x176,x177,x178,x179 ,x180,x181,x182,x183,x184,x185,x186,x187,x188,x189,x190,x191,x192 ,x193,x194,x195,x196; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58; e1.. - x187 - x188 - x189 - x190 - x191 - x192 - x193 - x194 - x195 - x196 + objvar =E= 0; e2.. - x121 - x136 - x137 - x138 - x139 - x140 - x141 - x142 - x143 - x144 - x145 =E= -90; e3.. - x122 - x146 - x147 - x148 - x149 - x150 - x151 - x152 - x153 - x154 - x155 =E= -350; e4.. - x123 - x156 - x157 - x158 - x159 - x160 - x161 - x162 - x163 - x164 - x165 =E= -200; e5.. - x124 - x166 - x167 - x168 - x169 - x170 - x171 - x172 - x173 - x174 - x175 =E= -40; e6.. - x125 - x176 - x177 - x178 - x179 - x180 - x181 - x182 - x183 - x184 - x185 =E= -130; e7.. - x21 - x31 - x41 - x51 - x61 - x71 - x81 - x91 - x101 - x111 - x136 - x146 - x156 - x166 - x176 + x187 =E= 0; e8.. - x22 - x32 - x42 - x52 - x62 - x72 - x82 - x92 - x102 - x112 - x137 - x147 - x157 - x167 - x177 + x188 =E= 0; e9.. - x23 - x33 - x43 - x53 - x63 - x73 - x83 - x93 - x103 - x113 - x138 - x148 - x158 - x168 - x178 + x189 =E= 0; e10.. - x24 - x34 - x44 - x54 - x64 - x74 - x84 - x94 - x104 - x114 - x139 - x149 - x159 - x169 - x179 + x190 =E= 0; e11.. - x25 - x35 - x45 - x55 - x65 - x75 - x85 - x95 - x105 - x115 - x140 - x150 - x160 - x170 - x180 + x191 =E= 0; e12.. - x26 - x36 - x46 - x56 - x66 - x76 - x86 - x96 - x106 - x116 - x141 - x151 - x161 - x171 - x181 + x192 =E= 0; e13.. - x27 - x37 - x47 - x57 - x67 - x77 - x87 - x97 - x107 - x117 - x142 - x152 - x162 - x172 - x182 + x193 =E= 0; e14.. - x28 - x38 - x48 - x58 - x68 - x78 - x88 - x98 - x108 - x118 - x143 - x153 - x163 - x173 - x183 + x194 =E= 0; e15.. - x29 - x39 - x49 - x59 - x69 - x79 - x89 - x99 - x109 - x119 - x144 - x154 - x164 - x174 - x184 + x195 =E= 0; e16.. - x30 - x40 - x50 - x60 - x70 - x80 - x90 - x100 - x110 - x120 - x145 - x155 - x165 - x175 - x185 + x196 =E= 0; e17.. - x21 - x22 - x23 - x24 - x25 - x26 - x27 - x28 - x29 - x30 - x126 + x187 =E= 0; e18.. - x31 - x32 - x33 - x34 - x35 - x36 - x37 - x38 - x39 - x40 - x127 + x188 =E= 0; e19.. - x41 - x42 - x43 - x44 - x45 - x46 - x47 - x48 - x49 - x50 - x128 + x189 =E= 0; e20.. - x51 - x52 - x53 - x54 - x55 - x56 - x57 - x58 - x59 - x60 - x129 + x190 =E= 0; e21.. - x61 - x62 - x63 - x64 - x65 - x66 - x67 - x68 - x69 - x70 - x130 + x191 =E= 0; e22.. - x71 - x72 - x73 - x74 - x75 - x76 - x77 - x78 - x79 - x80 - x131 + x192 =E= 0; e23.. - x81 - x82 - x83 - x84 - x85 - x86 - x87 - x88 - x89 - x90 - x132 + x193 =E= 0; e24.. - x91 - x92 - x93 - x94 - x95 - x96 - x97 - x98 - x99 - x100 - x133 + x194 =E= 0; e25.. - x101 - x102 - x103 - x104 - x105 - x106 - x107 - x108 - x109 - x110 - x134 + x195 =E= 0; e26.. - x111 - x112 - x113 - x114 - x115 - x116 - x117 - x118 - x119 - x120 - x135 + x196 =E= 0; e27.. - x121 - x122 - x123 - x124 - x125 - x126 - x127 - x128 - x129 - x130 - x131 - x132 - x133 - x134 - x135 + x186 =E= 0; e28.. x21*x11 + x31*x12 + x41*x13 + x51*x14 + x61*x15 + x71*x16 + x81*x17 + x91 *x18 + x101*x19 + x111*x20 - x187*x1 + 330*x136 + 50*x146 + 150*x156 + 240*x166 + 120*x176 =E= 0; e29.. x22*x11 + x32*x12 + x42*x13 + x52*x14 + x62*x15 + x72*x16 + x82*x17 + x92 *x18 + x102*x19 + x112*x20 - x188*x2 + 330*x137 + 50*x147 + 150*x157 + 240*x167 + 120*x177 =E= 0; e30.. x23*x11 + x33*x12 + x43*x13 + x53*x14 + x63*x15 + x73*x16 + x83*x17 + x93 *x18 + x103*x19 + x113*x20 - x189*x3 + 330*x138 + 50*x148 + 150*x158 + 240*x168 + 120*x178 =E= 0; e31.. x24*x11 + x34*x12 + x44*x13 + x54*x14 + x64*x15 + x74*x16 + x84*x17 + x94 *x18 + x104*x19 + x114*x20 - x190*x4 + 330*x139 + 50*x149 + 150*x159 + 240*x169 + 120*x179 =E= 0; e32.. x25*x11 + x35*x12 + x45*x13 + x55*x14 + x65*x15 + x75*x16 + x85*x17 + x95 *x18 + x105*x19 + x115*x20 - x191*x5 + 330*x140 + 50*x150 + 150*x160 + 240*x170 + 120*x180 =E= 0; e33.. x26*x11 + x36*x12 + x46*x13 + x56*x14 + x66*x15 + x76*x16 + x86*x17 + x96 *x18 + x106*x19 + x116*x20 - x192*x6 + 330*x141 + 50*x151 + 150*x161 + 240*x171 + 120*x181 =E= 0; e34.. x27*x11 + x37*x12 + x47*x13 + x57*x14 + x67*x15 + x77*x16 + x87*x17 + x97 *x18 + x107*x19 + x117*x20 - x193*x7 + 330*x142 + 50*x152 + 150*x162 + 240*x172 + 120*x182 =E= 0; e35.. x28*x11 + x38*x12 + x48*x13 + x58*x14 + x68*x15 + x78*x16 + x88*x17 + x98 *x18 + x108*x19 + x118*x20 - x194*x8 + 330*x143 + 50*x153 + 150*x163 + 240*x173 + 120*x183 =E= 0; e36.. x29*x11 + x39*x12 + x49*x13 + x59*x14 + x69*x15 + x79*x16 + x89*x17 + x99 *x18 + x109*x19 + x119*x20 - x195*x9 + 330*x144 + 50*x154 + 150*x164 + 240*x174 + 120*x184 =E= 0; e37.. x30*x11 + x40*x12 + x50*x13 + x60*x14 + x70*x15 + x80*x16 + x90*x17 + x100*x18 + x110*x19 + x120*x20 - x196*x10 + 330*x145 + 50*x155 + 150*x165 + 240*x175 + 120*x185 =E= 0; e38.. x1 =L= 30; e39.. x2 =L= 100; e40.. x3 =L= 50; e41.. x4 =L= 227; e42.. x5 =L= 100; e43.. x6 =L= 300; e44.. x7 =L= 12; e45.. x8 =L= 970; e46.. x9 =L= 20; e47.. x10 =L= 250; e48.. - 0.05*x1 + x11 =E= 0; e49.. - 0.2*x2 + x12 =E= 0; e50.. - 0.15*x3 + x13 =E= 0; e51.. - 0.88*x4 + x14 =E= 0; e52.. - 0.7*x5 + x15 =E= 0; e53.. - 0.4*x6 + x16 =E= 0; e54.. - 0.33*x7 + x17 =E= 0; e55.. - 0.3*x8 + x18 =E= 0; e56.. - 0.4*x9 + x19 =E= 0; e57.. - 0.3*x10 + x20 =E= 0; e58.. x126*x11 + x127*x12 + x128*x13 + x129*x14 + x130*x15 + x131*x16 + x132* x17 + x133*x18 + x134*x19 + x135*x20 + 330*x121 + 50*x122 + 150*x123 + 240*x124 + 120*x125 - 10*x186 =L= 0; * set non-default bounds x1.up = 1000000; x2.up = 1000000; x3.up = 1000000; x4.up = 1000000; x5.up = 1000000; x6.up = 1000000; x7.up = 1000000; x8.up = 1000000; x9.up = 1000000; x10.up = 1000000; x11.up = 1000000; x12.up = 1000000; x13.up = 1000000; x14.up = 1000000; x15.up = 1000000; x16.up = 1000000; x17.up = 1000000; x18.up = 1000000; x19.up = 1000000; x20.up = 1000000; x21.up = 1000000; x22.up = 1000000; x23.up = 1000000; x24.up = 1000000; x25.up = 1000000; x26.up = 1000000; x27.up = 1000000; x28.up = 1000000; x29.up = 1000000; x30.up = 1000000; x31.up = 1000000; x32.up = 1000000; x33.up = 1000000; x34.up = 1000000; x35.up = 1000000; x36.up = 1000000; x37.up = 1000000; x38.up = 1000000; x39.up = 1000000; x40.up = 1000000; x41.up = 1000000; x42.up = 1000000; x43.up = 1000000; x44.up = 1000000; x45.up = 1000000; x46.up = 1000000; x47.up = 1000000; x48.up = 1000000; x49.up = 1000000; x50.up = 1000000; x51.up = 1000000; x52.up = 1000000; x53.up = 1000000; x54.up = 1000000; x55.up = 1000000; x56.up = 1000000; x57.up = 1000000; x58.up = 1000000; x59.up = 1000000; x60.up = 1000000; x61.up = 1000000; x62.up = 1000000; x63.up = 1000000; x64.up = 1000000; x65.up = 1000000; x66.up = 1000000; x67.up = 1000000; x68.up = 1000000; x69.up = 1000000; x70.up = 1000000; x71.up = 1000000; x72.up = 1000000; x73.up = 1000000; x74.up = 1000000; x75.up = 1000000; x76.up = 1000000; x77.up = 1000000; x78.up = 1000000; x79.up = 1000000; x80.up = 1000000; x81.up = 1000000; x82.up = 1000000; x83.up = 1000000; x84.up = 1000000; x85.up = 1000000; x86.up = 1000000; x87.up = 1000000; x88.up = 1000000; x89.up = 1000000; x90.up = 1000000; x91.up = 1000000; x92.up = 1000000; x93.up = 1000000; x94.up = 1000000; x95.up = 1000000; x96.up = 1000000; x97.up = 1000000; x98.up = 1000000; x99.up = 1000000; x100.up = 1000000; x101.up = 1000000; x102.up = 1000000; x103.up = 1000000; x104.up = 1000000; x105.up = 1000000; x106.up = 1000000; x107.up = 1000000; x108.up = 1000000; x109.up = 1000000; x110.up = 1000000; x111.up = 1000000; x112.up = 1000000; x113.up = 1000000; x114.up = 1000000; x115.up = 1000000; x116.up = 1000000; x117.up = 1000000; x118.up = 1000000; x119.up = 1000000; x120.up = 1000000; x121.up = 1000000; x122.up = 1000000; x123.up = 1000000; x124.up = 1000000; x125.up = 1000000; x126.up = 1000000; x127.up = 1000000; x128.up = 1000000; x129.up = 1000000; x130.up = 1000000; x131.up = 1000000; x132.up = 1000000; x133.up = 1000000; x134.up = 1000000; x135.up = 1000000; x136.up = 1000000; x137.up = 1000000; x138.up = 1000000; x139.up = 1000000; x140.up = 1000000; x141.up = 1000000; x142.up = 1000000; x143.up = 1000000; x144.up = 1000000; x145.up = 1000000; x146.up = 1000000; x147.up = 1000000; x148.up = 1000000; x149.up = 1000000; x150.up = 1000000; x151.up = 1000000; x152.up = 1000000; x153.up = 1000000; x154.up = 1000000; x155.up = 1000000; x156.up = 1000000; x157.up = 1000000; x158.up = 1000000; x159.up = 1000000; x160.up = 1000000; x161.up = 1000000; x162.up = 1000000; x163.up = 1000000; x164.up = 1000000; x165.up = 1000000; x166.up = 1000000; x167.up = 1000000; x168.up = 1000000; x169.up = 1000000; x170.up = 1000000; x171.up = 1000000; x172.up = 1000000; x173.up = 1000000; x174.up = 1000000; x175.up = 1000000; x176.up = 1000000; x177.up = 1000000; x178.up = 1000000; x179.up = 1000000; x180.up = 1000000; x181.up = 1000000; x182.up = 1000000; x183.up = 1000000; x184.up = 1000000; x185.up = 1000000; x186.up = 1000000; x187.up = 1000000; x188.up = 1000000; x189.up = 1000000; x190.up = 1000000; x191.up = 1000000; x192.up = 1000000; x193.up = 1000000; x194.up = 1000000; x195.up = 1000000; x196.up = 1000000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91