MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waters
Formatsⓘ | ams gms mod nl osil py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 347.42036570 (LINDO) 215.57432830 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Brooke, Anthony, Drud, Arne S, and Meeraus, Alexander, Modeling Systems and Nonlinear Programming in a Research Environment. In Ragavan, R and Rohde, S M, Eds, Computers in Engineering, Vol. III, ACME, 1985. Drud, Arne S and Rosenborg, A, Dimensioning Water Distribution Networks, Masters thesis, Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, 1973. In Danish. |
Sourceⓘ | modified GAMS Model Library model waterx |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 195 |
#Binary Variablesⓘ | 14 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 46 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 137 |
#Linear Constraintsⓘ | 122 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 14 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 641 |
#Nonlinear Nonzeros in Jacobianⓘ | 46 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 116 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 28 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 2.875 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 14 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.8629e-02 |
Maximal coefficientⓘ | 6.3468e+04 |
Infeasibility of initial pointⓘ | 8503 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 138 54 14 70 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 196 70 14 0 112 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 645 599 46 0 * * Solve m using MINLP minimizing objvar; Sets s1 /85*92/,s2 /93*100/,s3 /101*108/,s4 /109*116/,s5 /117*124/ ,s6 /125*132/,s7 /133*140/,s8 /141*148/,s9 /149*156/,s10 /157*164/ ,s11 /165*172/,s12 /173*180/,s13 /181*188/,s14 /189*196/; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,objvar,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84 ,s1s1(s1),s1s2(s2),s1s3(s3),s1s4(s4),s1s5(s5),s1s6(s6),s1s7(s7) ,s1s8(s8),s1s9(s9),s1s10(s10),s1s11(s11),s1s12(s12),s1s13(s13) ,s1s14(s14); Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x65,x66; Binary Variables b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84; SOS1 Variables s1s1(s1),s1s2(s2),s1s3(s3),s1s4(s4),s1s5(s5),s1s6(s6),s1s7(s7) ,s1s8(s8),s1s9(s9),s1s10(s10),s1s11(s11),s1s12(s12),s1s13(s13) ,s1s14(s14); Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138; e1.. - x1 - x2 - x3 + x15 + x16 + x17 + x65 =E= 0; e2.. - x4 - x5 - x6 - x7 + x18 + x19 + x20 + x21 + x66 =E= 0; e3.. x1 + x4 - x8 - x9 - x10 - x11 - x15 - x18 + x22 + x23 + x24 + x25 =E= 1.212; e4.. x2 + x8 + x12 - x16 - x22 - x26 =E= 0.452; e5.. x9 - x12 + x13 - x23 + x26 - x27 =E= 0.245; e6.. x5 + x10 - x13 - x14 - x19 - x24 + x27 + x28 =E= 0.652; e7.. x6 + x14 - x20 - x28 =E= 0.252; e8.. x3 + x7 + x11 - x17 - x21 - x25 =E= 0.456; e9.. x29 - 38721.1970117411*s1s1('86') - 2543.8701482414*s1s1('87') - 207.747320703761*s1s1('88') - 23.9314504121258*s1s1('89') - 1.5722267648148*s1s1('90') - 0.181112645550961*s1s1('91') - 0.0390863672545667*s1s1('92') =E= 0; e10.. x30 - 32510.4890865135*s1s2('94') - 2135.84468132099*s1s2('95') - 174.425573683688*s1s2('96') - 20.0929521164322*s1s2('97') - 1.32004857865156*s1s2('98') - 0.152062982061963*s1s2('99') - 0.0328170876451919*s1s2('100') =E= 0; e11.. x31 - 63468.4628982673*s1s3('102') - 4169.69361956223*s1s3('103') - 340.521578201805*s1s3('104') - 39.2263796008983*s1s3('105') - 2.57705917665854*s1s3('106') - 0.296864304610023*s1s3('107') - 0.0640670186196026*s1s3('108') =E= 0; e12.. x32 - 50797.5773435889*s1s4('110') - 3337.25325093014*s1s4('111') - 272.539627020641*s1s4('112') - 31.3951994533022*s1s4('113') - 2.06257339263358*s1s4('114') - 0.237598120158509*s1s4('115') - 0.0512766370081929*s1s4('116') =E= 0; e13.. x33 - 59165.7349698592*s1s5('118') - 3887.01689524085*s1s5('119') - 317.436542928413*s1s5('120') - 36.5670992066393*s1s5('121') - 2.40235218067626*s1s5('122') - 0.27673893405488*s1s5('123') - 0.0597237127048799*s1s5('124') =E= 0; e14.. x34 - 32977.2294678044*s1s6('126') - 2166.50816836621*s1s6('127') - 176.929733450444*s1s6('128') - 20.3814187742893*s1s6('129') - 1.339*s1s6('130') - 0.154246090843839*s1s6('131') - 0.0332882297421199*s1s6('132') =E= 0; e15.. x35 - 33843.9321019273*s1s7('134') - 2223.4480134252*s1s7('135') - 181.579774357788*s1s7('136') - 20.9170801874496*s1s7('137') - 1.37419139860501*s1s7('138') - 0.158299963634093*s1s7('139') - 0.0341631060391402*s1s7('140') =E= 0; e16.. x36 - 31810.181054648*s1s8('142') - 2089.8364782095*s1s8('143') - 170.668274619734*s1s8('144') - 19.660130090483*s1s8('145') - 1.2916134290104*s1s8('146') - 0.148787395299671*s1s8('147') - 0.0321101751776739*s1s8('148') =E= 0; e17.. x37 - 39461.9459070343*s1s9('150') - 2592.53519858857*s1s9('151') - 211.721593458417*s1s9('152') - 24.3892667200816*s1s9('153') - 1.60230396616872*s1s9('154') - 0.184577388442944*s1s9('155') - 0.0398341019735132*s1s9('156') =E= 0; e18.. x38 - 32977.2294678044*s1s10('158') - 2166.50816836621*s1s10('159') - 176.929733450444*s1s10('160') - 20.3814187742893*s1s10('161') - 1.339*s1s10('162') - 0.154246090843839*s1s10('163') - 0.0332882297421199*s1s10('164') =E= 0; e19.. x39 - 52785.5148814787*s1s11('166') - 3467.85497167945*s1s11('167') - 283.205327698691*s1s11('168') - 32.6238347301504*s1s11('169') - 2.14329116080854*s1s11('170') - 0.246896402610059*s1s11('171') - 0.0532833223041444*s1s11('172') =E= 0; e20.. x40 - 30677.4142839491*s1s12('174') - 2015.41699236491*s1s12('175') - 164.590743970989*s1s12('176') - 18.9600290116536*s1s12('177') - 1.24561882211213*s1s12('178') - 0.143489047044288*s1s12('179') - 0.0309667255575633*s1s12('180') =E= 0; e21.. x41 - 28361.2795383154*s1s13('182') - 1863.25366856746*s1s13('183') - 152.164196629274*s1s13('184') - 17.5285530220005*s1s13('185') - 1.15157500841239*s1s13('186') - 0.132655670919396*s1s13('187') - 0.0286287479053886*s1s13('188') =E= 0; e22.. x42 - 50797.5773435889*s1s14('190') - 3337.25325093014*s1s14('191') - 272.539627020641*s1s14('192') - 31.3951994533022*s1s14('193') - 2.06257339263358*s1s14('194') - 0.237598120158509*s1s14('195') - 0.0512766370081929*s1s14('196') =E= 0; e23.. -(x1 + x15)*(x1 - x15)*x29 + x43 - x45 - x51 =E= 0; e24.. -(x2 + x16)*(x2 - x16)*x30 + x43 - x46 - x52 =E= 0; e25.. -(x3 + x17)*(x3 - x17)*x31 + x43 - x50 - x53 =E= 0; e26.. -(x4 + x18)*(x4 - x18)*x32 + x44 - x45 - x54 =E= 0; e27.. -(x5 + x19)*(x5 - x19)*x33 + x44 - x48 - x55 =E= 0; e28.. -(x6 + x20)*(x6 - x20)*x34 + x44 - x49 - x56 =E= 0; e29.. -(x7 + x21)*(x7 - x21)*x35 + x44 - x50 - x57 =E= 0; e30.. -(x8 + x22)*(x8 - x22)*x36 + x45 - x46 - x58 =E= 0; e31.. -(x9 + x23)*(x9 - x23)*x37 + x45 - x47 - x59 =E= 0; e32.. -(x10 + x24)*(x10 - x24)*x38 + x45 - x48 - x60 =E= 0; e33.. -(x11 + x25)*(x11 - x25)*x39 + x45 - x50 - x61 =E= 0; e34.. -(x12 + x26)*(x12 - x26)*x40 - x46 + x47 - x62 =E= 0; e35.. -(x13 + x27)*(x13 - x27)*x41 - x47 + x48 - x63 =E= 0; e36.. -(x14 + x28)*(x14 - x28)*x42 + x48 - x49 - x64 =E= 0; e37.. x51 - 12*s1s1('85') =L= 0; e38.. x52 - 12*s1s2('93') =L= 0; e39.. x53 - 12*s1s3('101') =L= 0; e40.. x54 - 12*s1s4('109') =L= 0; e41.. x55 - 12*s1s5('117') =L= 0; e42.. x56 - 12*s1s6('125') =L= 0; e43.. x57 - 12*s1s7('133') =L= 0; e44.. x58 - 12*s1s8('141') =L= 0; e45.. x59 - 12*s1s9('149') =L= 0; e46.. x60 - 12*s1s10('157') =L= 0; e47.. x61 - 12*s1s11('165') =L= 0; e48.. x62 - 12*s1s12('173') =L= 0; e49.. x63 - 12*s1s13('181') =L= 0; e50.. x64 - 12*s1s14('189') =L= 0; e51.. x51 + 12*s1s1('85') =G= 0; e52.. x52 + 12*s1s2('93') =G= 0; e53.. x53 + 12*s1s3('101') =G= 0; e54.. x54 + 12*s1s4('109') =G= 0; e55.. x55 + 12*s1s5('117') =G= 0; e56.. x56 + 12*s1s6('125') =G= 0; e57.. x57 + 12*s1s7('133') =G= 0; e58.. x58 + 12*s1s8('141') =G= 0; e59.. x59 + 12*s1s9('149') =G= 0; e60.. x60 + 12*s1s10('157') =G= 0; e61.. x61 + 12*s1s11('165') =G= 0; e62.. x62 + 12*s1s12('173') =G= 0; e63.. x63 + 12*s1s13('181') =G= 0; e64.. x64 + 12*s1s14('189') =G= 0; e65.. -(1.02*x65*(-6.5 + x43) + 1.02*x66*(-3.25 + x44)) + x67 =E= 0; e66.. x68 - 9.11349113439539*s1s1('86') - 17.6144733325531*s1s1('87') - 32.2986551864818*s1s1('88') - 54.4931814987685*s1s1('89') - 105.323928905069*s1s1('90') - 177.698914733437*s1s1('91') - 257.546555368226*s1s1('92') - 7.65172765642961*s1s2('94') - 14.7891900880288*s1s2('95') - 27.118094428506*s1s2('96') - 45.7527173518919*s1s2('97') - 88.4304387640365*s1s2('98') - 149.196798497086*s1s2('99') - 216.237232413786*s1s2('100') - 14.9380525029139*s1s3('102') - 28.8721329260735*s1s3('103') - 52.941183552398*s1s3('104') - 89.3205462402005*s1s3('105') - 172.637944844116*s1s3('106') - 291.268810037089*s1s3('107') - 422.148209648796*s1s3('108') - 11.9558099050809*s1s4('110') - 23.1080813747994*s1s4('111') - 42.3719709499612*s1s4('112') - 71.4885338137291*s1s4('113') - 138.172392322055*s1s4('114') - 233.119713791557*s1s4('115') - 337.870264236031*s1s4('116') - 13.9253546563734*s1s5('118') - 26.9147996770731*s1s5('119') - 49.3521332015331*s1s5('120') - 83.2652237802191*s1s5('121') - 160.93427229773*s1s5('122') - 271.522775764452*s1s5('123') - 393.529446744536*s1s5('124') - 7.76158051882097*s1s6('126') - 15.0015127080393*s1s6('127') - 27.5074183079396*s1s6('128') - 46.4095712271164*s1s6('129') - 89.7*s1s6('130') - 151.338758602103*s1s6('131') - 219.341665817957*s1s6('132') - 7.96556922221359*s1s7('134') - 15.3957802311063*s1s7('135') - 28.2303641796868*s1s7('136') - 47.6293006671023*s1s7('137') - 92.0574820424717*s1s7('138') - 155.316221319321*s1s7('139') - 225.10637081608*s1s7('140') - 7.48690188831565*s1s8('142') - 14.4706163324673*s1s8('143') - 26.5339439013751*s1s8('144') - 44.7671586494086*s1s8('145') - 86.5255598074927*s1s8('146') - 145.982952158506*s1s8('147') - 211.579268940989*s1s8('148') - 9.28783513744935*s1s9('150') - 17.9514438466182*s1s9('151') - 32.916538800503*s1s9('152') - 55.5356535066454*s1s9('153') - 107.338809384118*s1s9('154') - 181.098351861986*s1s9('155') - 262.473503425068*s1s9('156') - 7.76158051882097*s1s10('158') - 15.0015127080393*s1s10('159') - 27.5074183079396*s1s10('160') - 46.4095712271164*s1s10('161') - 89.7*s1s10('162') - 151.338758602103*s1s10('163') - 219.341665817957*s1s10('164') - 12.4236944883441*s1s11('166') - 24.0124044704238*s1s11('167') - 44.0301766363479*s1s11('168') - 74.2862014846846*s1s11('169') - 143.579699122125*s1s11('170') - 242.242736071415*s1s11('171') - 351.092646411238*s1s11('172') - 7.22029184733547*s1s12('174') - 13.9553148538372*s1s12('175') - 25.5890649679471*s1s12('176') - 43.1729913716576*s1s12('177') - 83.44436769489*s1s12('178') - 140.784470672041*s1s12('179') - 204.044889780639*s1s12('180') - 6.67516217420068*s1s13('182') - 12.9016931463472*s1s13('183') - 23.6570989315674*s1s13('184') - 39.913444642481*s1s13('185') - 77.1443452237428*s1s13('186') - 130.155289178744*s1s13('187') - 188.639567333459*s1s13('188') - 11.9558099050809*s1s14('190') - 23.1080813747994*s1s14('191') - 42.3719709499612*s1s14('192') - 71.4885338137291*s1s14('193') - 138.172392322055*s1s14('194') - 233.119713791557*s1s14('195') - 337.870264236031*s1s14('196') =E= 0; e67.. - 0.2*x65 - 0.17*x66 + x69 =E= 0; e68.. - 10*x67 - x68 - 10*x69 + objvar =E= 0; e69.. x1 - 2*b71 =L= 0; e70.. x2 - 2*b72 =L= 0; e71.. x3 - 2*b73 =L= 0; e72.. x4 - 2*b74 =L= 0; e73.. x5 - 2*b75 =L= 0; e74.. x6 - 2*b76 =L= 0; e75.. x7 - 2*b77 =L= 0; e76.. x8 - 2*b78 =L= 0; e77.. x9 - 2*b79 =L= 0; e78.. x10 - 2*b80 =L= 0; e79.. x11 - 2*b81 =L= 0; e80.. x12 - 2*b82 =L= 0; e81.. x13 - 2*b83 =L= 0; e82.. x14 - 2*b84 =L= 0; e83.. x15 + 2*b71 =L= 2; e84.. x16 + 2*b72 =L= 2; e85.. x17 + 2*b73 =L= 2; e86.. x18 + 2*b74 =L= 2; e87.. x19 + 2*b75 =L= 2; e88.. x20 + 2*b76 =L= 2; e89.. x21 + 2*b77 =L= 2; e90.. x22 + 2*b78 =L= 2; e91.. x23 + 2*b79 =L= 2; e92.. x24 + 2*b80 =L= 2; e93.. x25 + 2*b81 =L= 2; e94.. x26 + 2*b82 =L= 2; e95.. x27 + 2*b83 =L= 2; e96.. x28 + 2*b84 =L= 2; e97.. x1 + 2*s1s1('85') =L= 2; e98.. x2 + 2*s1s2('93') =L= 2; e99.. x3 + 2*s1s3('101') =L= 2; e100.. x4 + 2*s1s4('109') =L= 2; e101.. x5 + 2*s1s5('117') =L= 2; e102.. x6 + 2*s1s6('125') =L= 2; e103.. x7 + 2*s1s7('133') =L= 2; e104.. x8 + 2*s1s8('141') =L= 2; e105.. x9 + 2*s1s9('149') =L= 2; e106.. x10 + 2*s1s10('157') =L= 2; e107.. x11 + 2*s1s11('165') =L= 2; e108.. x12 + 2*s1s12('173') =L= 2; e109.. x13 + 2*s1s13('181') =L= 2; e110.. x14 + 2*s1s14('189') =L= 2; e111.. x15 + 2*s1s1('85') =L= 2; e112.. x16 + 2*s1s2('93') =L= 2; e113.. x17 + 2*s1s3('101') =L= 2; e114.. x18 + 2*s1s4('109') =L= 2; e115.. x19 + 2*s1s5('117') =L= 2; e116.. x20 + 2*s1s6('125') =L= 2; e117.. x21 + 2*s1s7('133') =L= 2; e118.. x22 + 2*s1s8('141') =L= 2; e119.. x23 + 2*s1s9('149') =L= 2; e120.. x24 + 2*s1s10('157') =L= 2; e121.. x25 + 2*s1s11('165') =L= 2; e122.. x26 + 2*s1s12('173') =L= 2; e123.. x27 + 2*s1s13('181') =L= 2; e124.. x28 + 2*s1s14('189') =L= 2; e125.. s1s1('85') + s1s1('86') + s1s1('87') + s1s1('88') + s1s1('89') + s1s1('90') + s1s1('91') + s1s1('92') =E= 1; e126.. s1s2('93') + s1s2('94') + s1s2('95') + s1s2('96') + s1s2('97') + s1s2('98') + s1s2('99') + s1s2('100') =E= 1; e127.. s1s3('101') + s1s3('102') + s1s3('103') + s1s3('104') + s1s3('105') + s1s3('106') + s1s3('107') + s1s3('108') =E= 1; e128.. s1s4('109') + s1s4('110') + s1s4('111') + s1s4('112') + s1s4('113') + s1s4('114') + s1s4('115') + s1s4('116') =E= 1; e129.. s1s5('117') + s1s5('118') + s1s5('119') + s1s5('120') + s1s5('121') + s1s5('122') + s1s5('123') + s1s5('124') =E= 1; e130.. s1s6('125') + s1s6('126') + s1s6('127') + s1s6('128') + s1s6('129') + s1s6('130') + s1s6('131') + s1s6('132') =E= 1; e131.. s1s7('133') + s1s7('134') + s1s7('135') + s1s7('136') + s1s7('137') + s1s7('138') + s1s7('139') + s1s7('140') =E= 1; e132.. s1s8('141') + s1s8('142') + s1s8('143') + s1s8('144') + s1s8('145') + s1s8('146') + s1s8('147') + s1s8('148') =E= 1; e133.. s1s9('149') + s1s9('150') + s1s9('151') + s1s9('152') + s1s9('153') + s1s9('154') + s1s9('155') + s1s9('156') =E= 1; e134.. s1s10('157') + s1s10('158') + s1s10('159') + s1s10('160') + s1s10('161') + s1s10('162') + s1s10('163') + s1s10('164') =E= 1; e135.. s1s11('165') + s1s11('166') + s1s11('167') + s1s11('168') + s1s11('169') + s1s11('170') + s1s11('171') + s1s11('172') =E= 1; e136.. s1s12('173') + s1s12('174') + s1s12('175') + s1s12('176') + s1s12('177') + s1s12('178') + s1s12('179') + s1s12('180') =E= 1; e137.. s1s13('181') + s1s13('182') + s1s13('183') + s1s13('184') + s1s13('185') + s1s13('186') + s1s13('187') + s1s13('188') =E= 1; e138.. s1s14('189') + s1s14('190') + s1s14('191') + s1s14('192') + s1s14('193') + s1s14('194') + s1s14('195') + s1s14('196') =E= 1; * set non-default bounds x43.lo = 6.5; x44.lo = 3.25; x45.lo = 16.58; x46.lo = 14.92; x47.lo = 12.925; x48.lo = 12.26; x49.lo = 8.76; x50.lo = 16.08; x65.up = 2.5; x66.up = 6; * set non-default levels x43.l = 11.5; x44.l = 8.25; x45.l = 21.58; x46.l = 19.92; x47.l = 17.925; x48.l = 17.26; x49.l = 13.76; x50.l = 21.08; x65.l = 0.961470588235294; x66.l = 2.30752941176471; s1s1.l('85') = 0.125; s1s1.l('86') = 0.125; s1s1.l('87') = 0.125; s1s1.l('88') = 0.125; s1s1.l('89') = 0.125; s1s1.l('90') = 0.125; s1s1.l('91') = 0.125; s1s1.l('92') = 0.125; s1s2.l('93') = 0.125; s1s2.l('94') = 0.125; s1s2.l('95') = 0.125; s1s2.l('96') = 0.125; s1s2.l('97') = 0.125; s1s2.l('98') = 0.125; s1s2.l('99') = 0.125; s1s2.l('100') = 0.125; s1s3.l('101') = 0.125; s1s3.l('102') = 0.125; s1s3.l('103') = 0.125; s1s3.l('104') = 0.125; s1s3.l('105') = 0.125; s1s3.l('106') = 0.125; s1s3.l('107') = 0.125; s1s3.l('108') = 0.125; s1s4.l('109') = 0.125; s1s4.l('110') = 0.125; s1s4.l('111') = 0.125; s1s4.l('112') = 0.125; s1s4.l('113') = 0.125; s1s4.l('114') = 0.125; s1s4.l('115') = 0.125; s1s4.l('116') = 0.125; s1s5.l('117') = 0.125; s1s5.l('118') = 0.125; s1s5.l('119') = 0.125; s1s5.l('120') = 0.125; s1s5.l('121') = 0.125; s1s5.l('122') = 0.125; s1s5.l('123') = 0.125; s1s5.l('124') = 0.125; s1s6.l('125') = 0.125; s1s6.l('126') = 0.125; s1s6.l('127') = 0.125; s1s6.l('128') = 0.125; s1s6.l('129') = 0.125; s1s6.l('130') = 0.125; s1s6.l('131') = 0.125; s1s6.l('132') = 0.125; s1s7.l('133') = 0.125; s1s7.l('134') = 0.125; s1s7.l('135') = 0.125; s1s7.l('136') = 0.125; s1s7.l('137') = 0.125; s1s7.l('138') = 0.125; s1s7.l('139') = 0.125; s1s7.l('140') = 0.125; s1s8.l('141') = 0.125; s1s8.l('142') = 0.125; s1s8.l('143') = 0.125; s1s8.l('144') = 0.125; s1s8.l('145') = 0.125; s1s8.l('146') = 0.125; s1s8.l('147') = 0.125; s1s8.l('148') = 0.125; s1s9.l('149') = 0.125; s1s9.l('150') = 0.125; s1s9.l('151') = 0.125; s1s9.l('152') = 0.125; s1s9.l('153') = 0.125; s1s9.l('154') = 0.125; s1s9.l('155') = 0.125; s1s9.l('156') = 0.125; s1s10.l('157') = 0.125; s1s10.l('158') = 0.125; s1s10.l('159') = 0.125; s1s10.l('160') = 0.125; s1s10.l('161') = 0.125; s1s10.l('162') = 0.125; s1s10.l('163') = 0.125; s1s10.l('164') = 0.125; s1s11.l('165') = 0.125; s1s11.l('166') = 0.125; s1s11.l('167') = 0.125; s1s11.l('168') = 0.125; s1s11.l('169') = 0.125; s1s11.l('170') = 0.125; s1s11.l('171') = 0.125; s1s11.l('172') = 0.125; s1s12.l('173') = 0.125; s1s12.l('174') = 0.125; s1s12.l('175') = 0.125; s1s12.l('176') = 0.125; s1s12.l('177') = 0.125; s1s12.l('178') = 0.125; s1s12.l('179') = 0.125; s1s12.l('180') = 0.125; s1s13.l('181') = 0.125; s1s13.l('182') = 0.125; s1s13.l('183') = 0.125; s1s13.l('184') = 0.125; s1s13.l('185') = 0.125; s1s13.l('186') = 0.125; s1s13.l('187') = 0.125; s1s13.l('188') = 0.125; s1s14.l('189') = 0.125; s1s14.l('190') = 0.125; s1s14.l('191') = 0.125; s1s14.l('192') = 0.125; s1s14.l('193') = 0.125; s1s14.l('194') = 0.125; s1s14.l('195') = 0.125; s1s14.l('196') = 0.125; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91