MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterund25
Formatsⓘ | ams gms lp mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 395.14352860 (ANTIGONE) 381.64063260 (BARON) 375.06207940 (COUENNE) 400.22497160 (GUROBI) 388.71356520 (LINDO) 407.49487730 (SCIP) |
Referencesⓘ | Castro, Pedro M and Teles, João P, Comparison of global optimization algorithms for the design of water-using networks, Computers and Chemical Engineering, 52, 2013, 249-261. Teles, João P, Castro, Pedro M, and Novais, Augusto Q, LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants, Chemical Engineering Science, 63:2, 2008, 376-394. Teles, João P, Castro, Pedro M, and Matos, Henrique A, Global optimization of water networks design using multiparametric disaggregation, Computers and Chemical Engineering 40, 2012, 132-147. |
Sourceⓘ | ANTIGONE test library model Other_MIQCQP/teles_etal_2009_WUN_Ex25.gms |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 15 Aug 2014 |
Problem typeⓘ | QCP |
#Variablesⓘ | 121 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 70 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 28 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 87 |
#Linear Constraintsⓘ | 51 |
#Quadratic Constraintsⓘ | 36 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 591 |
#Nonlinear Nonzeros in Jacobianⓘ | 285 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 270 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 0 |
#Blocks in Hessian of Lagrangianⓘ | 5 |
Minimal blocksize in Hessian of Lagrangianⓘ | 14 |
Maximal blocksize in Hessian of Lagrangianⓘ | 14 |
Average blocksize in Hessian of Lagrangianⓘ | 14.0 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0000e+00 |
Maximal coefficientⓘ | 1.0520e+03 |
Infeasibility of initial pointⓘ | 1.182e+05 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 88 45 6 37 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 122 122 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 620 335 285 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35 ,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52 ,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85,x86 ,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101,x102 ,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114,x115 ,x116,x117,x118,x119,x120,x121,x122; Positive Variables x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34 ,x35,x36,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51 ,x52,x53,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68 ,x69,x70,x71,x72,x73,x74,x75,x76,x77,x78,x79,x80,x81,x82,x83,x84,x85 ,x86,x87,x88,x89,x90,x91,x92,x93,x94,x95,x96,x97,x98,x99,x100,x101 ,x102,x103,x104,x105,x106,x107,x108,x109,x110,x111,x112,x113,x114 ,x115,x116,x117,x118,x119,x120,x121,x122; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88; e1.. objvar - x2 - x3 - x4 - x5 - x6 - x7 - x8 - x9 - x10 - x11 - x12 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 - x21 - x22 - x23 - x24 - x25 - x26 - x27 - x28 - x29 =E= 0; e2.. - x2 - x9 - x16 - x23 + x30 - x44 - x51 - x58 - x65 - x72 - x79 - x86 =E= 0; e3.. - x3 - x10 - x17 - x24 + x31 - x45 - x52 - x59 - x66 - x73 - x80 - x87 =E= 0; e4.. - x4 - x11 - x18 - x25 + x32 - x46 - x53 - x60 - x67 - x74 - x81 - x88 =E= 0; e5.. - x5 - x12 - x19 - x26 + x33 - x47 - x54 - x61 - x68 - x75 - x82 - x89 =E= 0; e6.. - x6 - x13 - x20 - x27 + x34 - x48 - x55 - x62 - x69 - x76 - x83 - x90 =E= 0; e7.. - x7 - x14 - x21 - x28 - x49 - x56 - x63 - x70 - x77 - x84 - x91 =E= -95; e8.. - x8 - x15 - x22 - x29 - x50 - x57 - x64 - x71 - x78 - x85 - x92 =E= -50; e9.. x30 - x37 - x44 - x45 - x46 - x47 - x48 - x49 - x50 =E= 0; e10.. x31 - x38 - x51 - x52 - x53 - x54 - x55 - x56 - x57 =E= 0; e11.. x32 - x39 - x58 - x59 - x60 - x61 - x62 - x63 - x64 =E= 0; e12.. x33 - x40 - x65 - x66 - x67 - x68 - x69 - x70 - x71 =E= 0; e13.. x34 - x41 - x72 - x73 - x74 - x75 - x76 - x77 - x78 =E= 0; e14.. - x42 - x79 - x80 - x81 - x82 - x83 - x84 - x85 =E= -55; e15.. - x43 - x86 - x87 - x88 - x89 - x90 - x91 - x92 =E= -80; e16.. x30*x93 - (x44*x108 + x51*x111 + x58*x114 + x65*x117 + x72*x120) - 4*x2 - 7*x9 - 7*x16 - 6*x23 - 809*x79 - 1052*x86 =E= 0; e17.. x30*x94 - (x44*x109 + x51*x112 + x58*x115 + x65*x118 + x72*x121) - 5*x2 - 8*x9 - 3*x16 - 4*x23 - 899*x79 - 229*x86 =E= 0; e18.. x30*x95 - (x44*x110 + x51*x113 + x58*x116 + x65*x119 + x72*x122) - 9*x2 - x9 - x16 - 9*x23 - 985*x79 - 783*x86 =E= 0; e19.. x31*x96 - (x45*x108 + x52*x111 + x59*x114 + x66*x117 + x73*x120) - 4*x3 - 7*x10 - 7*x17 - 6*x24 - 809*x80 - 1052*x87 =E= 0; e20.. x31*x97 - (x45*x109 + x52*x112 + x59*x115 + x66*x118 + x73*x121) - 5*x3 - 8*x10 - 3*x17 - 4*x24 - 899*x80 - 229*x87 =E= 0; e21.. x31*x98 - (x45*x110 + x52*x113 + x59*x116 + x66*x119 + x73*x122) - 9*x3 - x10 - x17 - 9*x24 - 985*x80 - 783*x87 =E= 0; e22.. x32*x99 - (x46*x108 + x53*x111 + x60*x114 + x67*x117 + x74*x120) - 4*x4 - 7*x11 - 7*x18 - 6*x25 - 809*x81 - 1052*x88 =E= 0; e23.. x32*x100 - (x46*x109 + x53*x112 + x60*x115 + x67*x118 + x74*x121) - 5*x4 - 8*x11 - 3*x18 - 4*x25 - 899*x81 - 229*x88 =E= 0; e24.. x32*x101 - (x46*x110 + x53*x113 + x60*x116 + x67*x119 + x74*x122) - 9*x4 - x11 - x18 - 9*x25 - 985*x81 - 783*x88 =E= 0; e25.. x33*x102 - (x47*x108 + x54*x111 + x61*x114 + x68*x117 + x75*x120) - 4*x5 - 7*x12 - 7*x19 - 6*x26 - 809*x82 - 1052*x89 =E= 0; e26.. x33*x103 - (x47*x109 + x54*x112 + x61*x115 + x68*x118 + x75*x121) - 5*x5 - 8*x12 - 3*x19 - 4*x26 - 899*x82 - 229*x89 =E= 0; e27.. x33*x104 - (x47*x110 + x54*x113 + x61*x116 + x68*x119 + x75*x122) - 9*x5 - x12 - x19 - 9*x26 - 985*x82 - 783*x89 =E= 0; e28.. x34*x105 - (x48*x108 + x55*x111 + x62*x114 + x69*x117 + x76*x120) - 4*x6 - 7*x13 - 7*x20 - 6*x27 - 809*x83 - 1052*x90 =E= 0; e29.. x34*x106 - (x48*x109 + x55*x112 + x62*x115 + x69*x118 + x76*x121) - 5*x6 - 8*x13 - 3*x20 - 4*x27 - 899*x83 - 229*x90 =E= 0; e30.. x34*x107 - (x48*x110 + x55*x113 + x62*x116 + x69*x119 + x76*x122) - 9*x6 - x13 - x20 - 9*x27 - 985*x83 - 783*x90 =E= 0; e31.. -x30*(x108 - x93) =E= -702; e32.. -x30*(x109 - x94) =E= -3294; e33.. -x30*(x110 - x95) =E= -918; e34.. -x31*(x111 - x96) =E= -102138; e35.. -x31*(x112 - x97) =E= -32364; e36.. -x31*(x113 - x98) =E= -2088; e37.. -x32*(x114 - x99) =E= -118198; e38.. -x32*(x115 - x100) =E= -36838; e39.. -x32*(x116 - x101) =E= -113678; e40.. -x33*(x117 - x102) =E= -8568; e41.. -x33*(x118 - x103) =E= -44948; e42.. -x33*(x119 - x104) =E= -19788; e43.. -x34*(x120 - x105) =E= -82600; e44.. -x34*(x121 - x106) =E= -4100; e45.. -x34*(x122 - x107) =E= -90400; e46.. x93 =L= 857; e47.. x94 =L= 479; e48.. x95 =L= 781; e49.. x96 =L= 71; e50.. x97 =L= 990; e51.. x98 =L= 998; e52.. x99 =L= 650; e53.. x100 =L= 759; e54.. x101 =L= 54; e55.. x102 =L= 905; e56.. x103 =L= 120; e57.. x104 =L= 452; e58.. x105 =L= 366; e59.. x106 =L= 169; e60.. x107 =L= 169; e61.. x108 =L= 870; e62.. x109 =L= 540; e63.. x110 =L= 798; e64.. x111 =L= 658; e65.. x112 =L= 1176; e66.. x113 =L= 1010; e67.. x114 =L= 1173; e68.. x115 =L= 922; e69.. x116 =L= 557; e70.. x117 =L= 1031; e71.. x118 =L= 781; e72.. x119 =L= 743; e73.. x120 =L= 1192; e74.. x121 =L= 210; e75.. x122 =L= 1073; e76.. -(x49*x108 + x56*x111 + x63*x114 + x70*x117 + x77*x120) - 4*x7 - 7*x14 - 7*x21 - 6*x28 - 809*x84 - 1052*x91 =G= -22990; e77.. -(x49*x109 + x56*x112 + x63*x115 + x70*x118 + x77*x121) - 5*x7 - 8*x14 - 3*x21 - 4*x28 - 899*x84 - 229*x91 =G= -61940; e78.. -(x49*x110 + x56*x113 + x63*x116 + x70*x119 + x77*x122) - 9*x7 - x14 - x21 - 9*x28 - 985*x84 - 783*x91 =G= -8740; e79.. -(x50*x108 + x57*x111 + x64*x114 + x71*x117 + x78*x120) - 4*x8 - 7*x15 - 7*x22 - 6*x29 - 809*x85 - 1052*x92 =G= -30900; e80.. -(x50*x109 + x57*x112 + x64*x115 + x71*x118 + x78*x121) - 5*x8 - 8*x15 - 3*x22 - 4*x29 - 899*x85 - 229*x92 =G= -6700; e81.. -(x50*x110 + x57*x113 + x64*x116 + x71*x119 + x78*x122) - 9*x8 - x15 - x22 - 9*x29 - 985*x85 - 783*x92 =G= -37200; e82.. x30 =L= 54; e83.. x31 =L= 174; e84.. x32 =L= 226; e85.. x33 =L= 68; e86.. x34 =L= 100; e87.. x35 =L= 0; e88.. x36 =L= 0; * set non-default bounds x2.up = 100000; x3.up = 100000; x4.up = 100000; x5.up = 100000; x6.up = 100000; x7.up = 100000; x8.up = 100000; x9.up = 100000; x10.up = 100000; x11.up = 100000; x12.up = 100000; x13.up = 100000; x14.up = 100000; x15.up = 100000; x16.up = 100000; x17.up = 100000; x18.up = 100000; x19.up = 100000; x20.up = 100000; x21.up = 100000; x22.up = 100000; x23.up = 100000; x24.up = 100000; x25.up = 100000; x26.up = 100000; x27.up = 100000; x28.up = 100000; x29.up = 100000; x30.up = 100000; x31.up = 100000; x32.up = 100000; x33.up = 100000; x34.up = 100000; x35.up = 100000; x36.up = 100000; x37.up = 100000; x38.up = 100000; x39.up = 100000; x40.up = 100000; x41.up = 100000; x42.up = 100000; x43.up = 100000; x44.up = 100000; x45.up = 100000; x46.up = 100000; x47.up = 100000; x48.up = 100000; x49.up = 100000; x50.up = 100000; x51.up = 100000; x52.up = 100000; x53.up = 100000; x54.up = 100000; x55.up = 100000; x56.up = 100000; x57.up = 100000; x58.up = 100000; x59.up = 100000; x60.up = 100000; x61.up = 100000; x62.up = 100000; x63.up = 100000; x64.up = 100000; x65.up = 100000; x66.up = 100000; x67.up = 100000; x68.up = 100000; x69.up = 100000; x70.up = 100000; x71.up = 100000; x72.up = 100000; x73.up = 100000; x74.up = 100000; x75.up = 100000; x76.up = 100000; x77.up = 100000; x78.up = 100000; x79.up = 100000; x80.up = 100000; x81.up = 100000; x82.up = 100000; x83.up = 100000; x84.up = 100000; x85.up = 100000; x86.up = 100000; x87.up = 100000; x88.up = 100000; x89.up = 100000; x90.up = 100000; x91.up = 100000; x92.up = 100000; x93.up = 100000; x94.up = 100000; x95.up = 100000; x96.up = 100000; x97.up = 100000; x98.up = 100000; x99.up = 100000; x100.up = 100000; x101.up = 100000; x102.up = 100000; x103.up = 100000; x104.up = 100000; x105.up = 100000; x106.up = 100000; x107.up = 100000; x108.up = 100000; x109.up = 100000; x110.up = 100000; x111.up = 100000; x112.up = 100000; x113.up = 100000; x114.up = 100000; x115.up = 100000; x116.up = 100000; x117.up = 100000; x118.up = 100000; x119.up = 100000; x120.up = 100000; x121.up = 100000; x122.up = 100000; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91