MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance waterz
Formatsⓘ | ams gms mod nl osil pip py |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 484.95868560 (BARON) 255.36669090 (COUENNE) 274.76889000 (LINDO) 563.49861890 (SCIP) 0.00000000 (SHOT) |
Referencesⓘ | Brooke, Anthony, Drud, Arne S, and Meeraus, Alexander, Modeling Systems and Nonlinear Programming in a Research Environment. In Ragavan, R and Rohde, S M, Eds, Computers in Engineering, Vol. III, ACME, 1985. Drud, Arne S and Rosenborg, A, Dimensioning Water Distribution Networks, Masters thesis, Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, 1973. In Danish. |
Sourceⓘ | modified GAMS Model Library model waterx |
Applicationⓘ | Water Network Design |
Added to libraryⓘ | 01 May 2001 |
Problem typeⓘ | MBNLP |
#Variablesⓘ | 195 |
#Binary Variablesⓘ | 126 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 46 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 3 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 137 |
#Linear Constraintsⓘ | 122 |
#Quadratic Constraintsⓘ | 1 |
#Polynomial Constraintsⓘ | 14 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 0 |
Operands in Gen. Nonlin. Functionsⓘ | |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 641 |
#Nonlinear Nonzeros in Jacobianⓘ | 46 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 116 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 28 |
#Blocks in Hessian of Lagrangianⓘ | 16 |
Minimal blocksize in Hessian of Lagrangianⓘ | 2 |
Maximal blocksize in Hessian of Lagrangianⓘ | 3 |
Average blocksize in Hessian of Lagrangianⓘ | 2.875 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 2.8629e-02 |
Maximal coefficientⓘ | 6.3468e+04 |
Infeasibility of initial pointⓘ | 8503 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 138 54 14 70 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 196 70 126 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 645 599 46 0 * * Solve m using MINLP minimizing objvar; Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19 ,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36 ,x37,x38,x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53 ,x54,x55,x56,x57,x58,x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69 ,objvar,b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101 ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114 ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127 ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140 ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153 ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166 ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179 ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192 ,b193,b194,b195,b196; Positive Variables x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17 ,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x65,x66; Binary Variables b71,b72,b73,b74,b75,b76,b77,b78,b79,b80,b81,b82,b83,b84,b85 ,b86,b87,b88,b89,b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100,b101 ,b102,b103,b104,b105,b106,b107,b108,b109,b110,b111,b112,b113,b114 ,b115,b116,b117,b118,b119,b120,b121,b122,b123,b124,b125,b126,b127 ,b128,b129,b130,b131,b132,b133,b134,b135,b136,b137,b138,b139,b140 ,b141,b142,b143,b144,b145,b146,b147,b148,b149,b150,b151,b152,b153 ,b154,b155,b156,b157,b158,b159,b160,b161,b162,b163,b164,b165,b166 ,b167,b168,b169,b170,b171,b172,b173,b174,b175,b176,b177,b178,b179 ,b180,b181,b182,b183,b184,b185,b186,b187,b188,b189,b190,b191,b192 ,b193,b194,b195,b196; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33,e34,e35,e36 ,e37,e38,e39,e40,e41,e42,e43,e44,e45,e46,e47,e48,e49,e50,e51,e52,e53 ,e54,e55,e56,e57,e58,e59,e60,e61,e62,e63,e64,e65,e66,e67,e68,e69,e70 ,e71,e72,e73,e74,e75,e76,e77,e78,e79,e80,e81,e82,e83,e84,e85,e86,e87 ,e88,e89,e90,e91,e92,e93,e94,e95,e96,e97,e98,e99,e100,e101,e102,e103 ,e104,e105,e106,e107,e108,e109,e110,e111,e112,e113,e114,e115,e116 ,e117,e118,e119,e120,e121,e122,e123,e124,e125,e126,e127,e128,e129 ,e130,e131,e132,e133,e134,e135,e136,e137,e138; e1.. - x1 - x2 - x3 + x15 + x16 + x17 + x65 =E= 0; e2.. - x4 - x5 - x6 - x7 + x18 + x19 + x20 + x21 + x66 =E= 0; e3.. x1 + x4 - x8 - x9 - x10 - x11 - x15 - x18 + x22 + x23 + x24 + x25 =E= 1.212; e4.. x2 + x8 + x12 - x16 - x22 - x26 =E= 0.452; e5.. x9 - x12 + x13 - x23 + x26 - x27 =E= 0.245; e6.. x5 + x10 - x13 - x14 - x19 - x24 + x27 + x28 =E= 0.652; e7.. x6 + x14 - x20 - x28 =E= 0.252; e8.. x3 + x7 + x11 - x17 - x21 - x25 =E= 0.456; e9.. x29 - 38721.1970117411*b86 - 2543.8701482414*b87 - 207.747320703761*b88 - 23.9314504121258*b89 - 1.5722267648148*b90 - 0.181112645550961*b91 - 0.0390863672545667*b92 =E= 0; e10.. x30 - 32510.4890865135*b94 - 2135.84468132099*b95 - 174.425573683688*b96 - 20.0929521164322*b97 - 1.32004857865156*b98 - 0.152062982061963*b99 - 0.0328170876451919*b100 =E= 0; e11.. x31 - 63468.4628982673*b102 - 4169.69361956223*b103 - 340.521578201805*b104 - 39.2263796008983*b105 - 2.57705917665854*b106 - 0.296864304610023*b107 - 0.0640670186196026*b108 =E= 0; e12.. x32 - 50797.5773435889*b110 - 3337.25325093014*b111 - 272.539627020641*b112 - 31.3951994533022*b113 - 2.06257339263358*b114 - 0.237598120158509*b115 - 0.0512766370081929*b116 =E= 0; e13.. x33 - 59165.7349698592*b118 - 3887.01689524085*b119 - 317.436542928413*b120 - 36.5670992066393*b121 - 2.40235218067626*b122 - 0.27673893405488*b123 - 0.0597237127048799*b124 =E= 0; e14.. x34 - 32977.2294678044*b126 - 2166.50816836621*b127 - 176.929733450444*b128 - 20.3814187742893*b129 - 1.339*b130 - 0.154246090843839*b131 - 0.0332882297421199*b132 =E= 0; e15.. x35 - 33843.9321019273*b134 - 2223.4480134252*b135 - 181.579774357788*b136 - 20.9170801874496*b137 - 1.37419139860501*b138 - 0.158299963634093*b139 - 0.0341631060391402*b140 =E= 0; e16.. x36 - 31810.181054648*b142 - 2089.8364782095*b143 - 170.668274619734*b144 - 19.660130090483*b145 - 1.2916134290104*b146 - 0.148787395299671*b147 - 0.0321101751776739*b148 =E= 0; e17.. x37 - 39461.9459070343*b150 - 2592.53519858857*b151 - 211.721593458417*b152 - 24.3892667200816*b153 - 1.60230396616872*b154 - 0.184577388442944*b155 - 0.0398341019735132*b156 =E= 0; e18.. x38 - 32977.2294678044*b158 - 2166.50816836621*b159 - 176.929733450444*b160 - 20.3814187742893*b161 - 1.339*b162 - 0.154246090843839*b163 - 0.0332882297421199*b164 =E= 0; e19.. x39 - 52785.5148814787*b166 - 3467.85497167945*b167 - 283.205327698691*b168 - 32.6238347301504*b169 - 2.14329116080854*b170 - 0.246896402610059*b171 - 0.0532833223041444*b172 =E= 0; e20.. x40 - 30677.4142839491*b174 - 2015.41699236491*b175 - 164.590743970989*b176 - 18.9600290116536*b177 - 1.24561882211213*b178 - 0.143489047044288*b179 - 0.0309667255575633*b180 =E= 0; e21.. x41 - 28361.2795383154*b182 - 1863.25366856746*b183 - 152.164196629274*b184 - 17.5285530220005*b185 - 1.15157500841239*b186 - 0.132655670919396*b187 - 0.0286287479053886*b188 =E= 0; e22.. x42 - 50797.5773435889*b190 - 3337.25325093014*b191 - 272.539627020641*b192 - 31.3951994533022*b193 - 2.06257339263358*b194 - 0.237598120158509*b195 - 0.0512766370081929*b196 =E= 0; e23.. -(x1 + x15)*(x1 - x15)*x29 + x43 - x45 - x51 =E= 0; e24.. -(x2 + x16)*(x2 - x16)*x30 + x43 - x46 - x52 =E= 0; e25.. -(x3 + x17)*(x3 - x17)*x31 + x43 - x50 - x53 =E= 0; e26.. -(x4 + x18)*(x4 - x18)*x32 + x44 - x45 - x54 =E= 0; e27.. -(x5 + x19)*(x5 - x19)*x33 + x44 - x48 - x55 =E= 0; e28.. -(x6 + x20)*(x6 - x20)*x34 + x44 - x49 - x56 =E= 0; e29.. -(x7 + x21)*(x7 - x21)*x35 + x44 - x50 - x57 =E= 0; e30.. -(x8 + x22)*(x8 - x22)*x36 + x45 - x46 - x58 =E= 0; e31.. -(x9 + x23)*(x9 - x23)*x37 + x45 - x47 - x59 =E= 0; e32.. -(x10 + x24)*(x10 - x24)*x38 + x45 - x48 - x60 =E= 0; e33.. -(x11 + x25)*(x11 - x25)*x39 + x45 - x50 - x61 =E= 0; e34.. -(x12 + x26)*(x12 - x26)*x40 - x46 + x47 - x62 =E= 0; e35.. -(x13 + x27)*(x13 - x27)*x41 - x47 + x48 - x63 =E= 0; e36.. -(x14 + x28)*(x14 - x28)*x42 + x48 - x49 - x64 =E= 0; e37.. x51 - 12*b85 =L= 0; e38.. x52 - 12*b93 =L= 0; e39.. x53 - 12*b101 =L= 0; e40.. x54 - 12*b109 =L= 0; e41.. x55 - 12*b117 =L= 0; e42.. x56 - 12*b125 =L= 0; e43.. x57 - 12*b133 =L= 0; e44.. x58 - 12*b141 =L= 0; e45.. x59 - 12*b149 =L= 0; e46.. x60 - 12*b157 =L= 0; e47.. x61 - 12*b165 =L= 0; e48.. x62 - 12*b173 =L= 0; e49.. x63 - 12*b181 =L= 0; e50.. x64 - 12*b189 =L= 0; e51.. x51 + 12*b85 =G= 0; e52.. x52 + 12*b93 =G= 0; e53.. x53 + 12*b101 =G= 0; e54.. x54 + 12*b109 =G= 0; e55.. x55 + 12*b117 =G= 0; e56.. x56 + 12*b125 =G= 0; e57.. x57 + 12*b133 =G= 0; e58.. x58 + 12*b141 =G= 0; e59.. x59 + 12*b149 =G= 0; e60.. x60 + 12*b157 =G= 0; e61.. x61 + 12*b165 =G= 0; e62.. x62 + 12*b173 =G= 0; e63.. x63 + 12*b181 =G= 0; e64.. x64 + 12*b189 =G= 0; e65.. -(1.02*x65*(-6.5 + x43) + 1.02*x66*(-3.25 + x44)) + x67 =E= 0; e66.. x68 - 9.11349113439539*b86 - 17.6144733325531*b87 - 32.2986551864818*b88 - 54.4931814987685*b89 - 105.323928905069*b90 - 177.698914733437*b91 - 257.546555368226*b92 - 7.65172765642961*b94 - 14.7891900880288*b95 - 27.118094428506*b96 - 45.7527173518919*b97 - 88.4304387640365*b98 - 149.196798497086*b99 - 216.237232413786*b100 - 14.9380525029139*b102 - 28.8721329260735*b103 - 52.941183552398*b104 - 89.3205462402005*b105 - 172.637944844116*b106 - 291.268810037089*b107 - 422.148209648796*b108 - 11.9558099050809*b110 - 23.1080813747994*b111 - 42.3719709499612*b112 - 71.4885338137291*b113 - 138.172392322055*b114 - 233.119713791557*b115 - 337.870264236031*b116 - 13.9253546563734*b118 - 26.9147996770731*b119 - 49.3521332015331*b120 - 83.2652237802191*b121 - 160.93427229773*b122 - 271.522775764452*b123 - 393.529446744536*b124 - 7.76158051882097*b126 - 15.0015127080393*b127 - 27.5074183079396*b128 - 46.4095712271164*b129 - 89.7*b130 - 151.338758602103*b131 - 219.341665817957*b132 - 7.96556922221359*b134 - 15.3957802311063*b135 - 28.2303641796868*b136 - 47.6293006671023*b137 - 92.0574820424717*b138 - 155.316221319321*b139 - 225.10637081608*b140 - 7.48690188831565*b142 - 14.4706163324673*b143 - 26.5339439013751*b144 - 44.7671586494086*b145 - 86.5255598074927*b146 - 145.982952158506*b147 - 211.579268940989*b148 - 9.28783513744935*b150 - 17.9514438466182*b151 - 32.916538800503*b152 - 55.5356535066454*b153 - 107.338809384118*b154 - 181.098351861986*b155 - 262.473503425068*b156 - 7.76158051882097*b158 - 15.0015127080393*b159 - 27.5074183079396*b160 - 46.4095712271164*b161 - 89.7*b162 - 151.338758602103*b163 - 219.341665817957*b164 - 12.4236944883441*b166 - 24.0124044704238*b167 - 44.0301766363479*b168 - 74.2862014846846*b169 - 143.579699122125*b170 - 242.242736071415*b171 - 351.092646411238*b172 - 7.22029184733547*b174 - 13.9553148538372*b175 - 25.5890649679471*b176 - 43.1729913716576*b177 - 83.44436769489*b178 - 140.784470672041*b179 - 204.044889780639*b180 - 6.67516217420068*b182 - 12.9016931463472*b183 - 23.6570989315674*b184 - 39.913444642481*b185 - 77.1443452237428*b186 - 130.155289178744*b187 - 188.639567333459*b188 - 11.9558099050809*b190 - 23.1080813747994*b191 - 42.3719709499612*b192 - 71.4885338137291*b193 - 138.172392322055*b194 - 233.119713791557*b195 - 337.870264236031*b196 =E= 0; e67.. - 0.2*x65 - 0.17*x66 + x69 =E= 0; e68.. - 10*x67 - x68 - 10*x69 + objvar =E= 0; e69.. x1 - 2*b71 =L= 0; e70.. x2 - 2*b72 =L= 0; e71.. x3 - 2*b73 =L= 0; e72.. x4 - 2*b74 =L= 0; e73.. x5 - 2*b75 =L= 0; e74.. x6 - 2*b76 =L= 0; e75.. x7 - 2*b77 =L= 0; e76.. x8 - 2*b78 =L= 0; e77.. x9 - 2*b79 =L= 0; e78.. x10 - 2*b80 =L= 0; e79.. x11 - 2*b81 =L= 0; e80.. x12 - 2*b82 =L= 0; e81.. x13 - 2*b83 =L= 0; e82.. x14 - 2*b84 =L= 0; e83.. x15 + 2*b71 =L= 2; e84.. x16 + 2*b72 =L= 2; e85.. x17 + 2*b73 =L= 2; e86.. x18 + 2*b74 =L= 2; e87.. x19 + 2*b75 =L= 2; e88.. x20 + 2*b76 =L= 2; e89.. x21 + 2*b77 =L= 2; e90.. x22 + 2*b78 =L= 2; e91.. x23 + 2*b79 =L= 2; e92.. x24 + 2*b80 =L= 2; e93.. x25 + 2*b81 =L= 2; e94.. x26 + 2*b82 =L= 2; e95.. x27 + 2*b83 =L= 2; e96.. x28 + 2*b84 =L= 2; e97.. x1 + 2*b85 =L= 2; e98.. x2 + 2*b93 =L= 2; e99.. x3 + 2*b101 =L= 2; e100.. x4 + 2*b109 =L= 2; e101.. x5 + 2*b117 =L= 2; e102.. x6 + 2*b125 =L= 2; e103.. x7 + 2*b133 =L= 2; e104.. x8 + 2*b141 =L= 2; e105.. x9 + 2*b149 =L= 2; e106.. x10 + 2*b157 =L= 2; e107.. x11 + 2*b165 =L= 2; e108.. x12 + 2*b173 =L= 2; e109.. x13 + 2*b181 =L= 2; e110.. x14 + 2*b189 =L= 2; e111.. x15 + 2*b85 =L= 2; e112.. x16 + 2*b93 =L= 2; e113.. x17 + 2*b101 =L= 2; e114.. x18 + 2*b109 =L= 2; e115.. x19 + 2*b117 =L= 2; e116.. x20 + 2*b125 =L= 2; e117.. x21 + 2*b133 =L= 2; e118.. x22 + 2*b141 =L= 2; e119.. x23 + 2*b149 =L= 2; e120.. x24 + 2*b157 =L= 2; e121.. x25 + 2*b165 =L= 2; e122.. x26 + 2*b173 =L= 2; e123.. x27 + 2*b181 =L= 2; e124.. x28 + 2*b189 =L= 2; e125.. b85 + b86 + b87 + b88 + b89 + b90 + b91 + b92 =E= 1; e126.. b93 + b94 + b95 + b96 + b97 + b98 + b99 + b100 =E= 1; e127.. b101 + b102 + b103 + b104 + b105 + b106 + b107 + b108 =E= 1; e128.. b109 + b110 + b111 + b112 + b113 + b114 + b115 + b116 =E= 1; e129.. b117 + b118 + b119 + b120 + b121 + b122 + b123 + b124 =E= 1; e130.. b125 + b126 + b127 + b128 + b129 + b130 + b131 + b132 =E= 1; e131.. b133 + b134 + b135 + b136 + b137 + b138 + b139 + b140 =E= 1; e132.. b141 + b142 + b143 + b144 + b145 + b146 + b147 + b148 =E= 1; e133.. b149 + b150 + b151 + b152 + b153 + b154 + b155 + b156 =E= 1; e134.. b157 + b158 + b159 + b160 + b161 + b162 + b163 + b164 =E= 1; e135.. b165 + b166 + b167 + b168 + b169 + b170 + b171 + b172 =E= 1; e136.. b173 + b174 + b175 + b176 + b177 + b178 + b179 + b180 =E= 1; e137.. b181 + b182 + b183 + b184 + b185 + b186 + b187 + b188 =E= 1; e138.. b189 + b190 + b191 + b192 + b193 + b194 + b195 + b196 =E= 1; * set non-default bounds x43.lo = 6.5; x44.lo = 3.25; x45.lo = 16.58; x46.lo = 14.92; x47.lo = 12.925; x48.lo = 12.26; x49.lo = 8.76; x50.lo = 16.08; x65.up = 2.5; x66.up = 6; * set non-default levels x43.l = 11.5; x44.l = 8.25; x45.l = 21.58; x46.l = 19.92; x47.l = 17.925; x48.l = 17.26; x49.l = 13.76; x50.l = 21.08; x65.l = 0.961470588235294; x66.l = 2.30752941176471; b85.l = 0.125; b86.l = 0.125; b87.l = 0.125; b88.l = 0.125; b89.l = 0.125; b90.l = 0.125; b91.l = 0.125; b92.l = 0.125; b93.l = 0.125; b94.l = 0.125; b95.l = 0.125; b96.l = 0.125; b97.l = 0.125; b98.l = 0.125; b99.l = 0.125; b100.l = 0.125; b101.l = 0.125; b102.l = 0.125; b103.l = 0.125; b104.l = 0.125; b105.l = 0.125; b106.l = 0.125; b107.l = 0.125; b108.l = 0.125; b109.l = 0.125; b110.l = 0.125; b111.l = 0.125; b112.l = 0.125; b113.l = 0.125; b114.l = 0.125; b115.l = 0.125; b116.l = 0.125; b117.l = 0.125; b118.l = 0.125; b119.l = 0.125; b120.l = 0.125; b121.l = 0.125; b122.l = 0.125; b123.l = 0.125; b124.l = 0.125; b125.l = 0.125; b126.l = 0.125; b127.l = 0.125; b128.l = 0.125; b129.l = 0.125; b130.l = 0.125; b131.l = 0.125; b132.l = 0.125; b133.l = 0.125; b134.l = 0.125; b135.l = 0.125; b136.l = 0.125; b137.l = 0.125; b138.l = 0.125; b139.l = 0.125; b140.l = 0.125; b141.l = 0.125; b142.l = 0.125; b143.l = 0.125; b144.l = 0.125; b145.l = 0.125; b146.l = 0.125; b147.l = 0.125; b148.l = 0.125; b149.l = 0.125; b150.l = 0.125; b151.l = 0.125; b152.l = 0.125; b153.l = 0.125; b154.l = 0.125; b155.l = 0.125; b156.l = 0.125; b157.l = 0.125; b158.l = 0.125; b159.l = 0.125; b160.l = 0.125; b161.l = 0.125; b162.l = 0.125; b163.l = 0.125; b164.l = 0.125; b165.l = 0.125; b166.l = 0.125; b167.l = 0.125; b168.l = 0.125; b169.l = 0.125; b170.l = 0.125; b171.l = 0.125; b172.l = 0.125; b173.l = 0.125; b174.l = 0.125; b175.l = 0.125; b176.l = 0.125; b177.l = 0.125; b178.l = 0.125; b179.l = 0.125; b180.l = 0.125; b181.l = 0.125; b182.l = 0.125; b183.l = 0.125; b184.l = 0.125; b185.l = 0.125; b186.l = 0.125; b187.l = 0.125; b188.l = 0.125; b189.l = 0.125; b190.l = 0.125; b191.l = 0.125; b192.l = 0.125; b193.l = 0.125; b194.l = 0.125; b195.l = 0.125; b196.l = 0.125; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set MINLP $set MINLP MINLP Solve m using %MINLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91