MINLPLib
A Library of Mixed-Integer and Continuous Nonlinear Programming Instances
Home // Instances // Documentation // Download // Statistics
Instance worst
Formatsⓘ | ams gms osil |
Primal Bounds (infeas ≤ 1e-08)ⓘ | |
Other points (infeas > 1e-08)ⓘ | |
Dual Boundsⓘ | 20762609.21000000 (LINDO) |
Referencesⓘ | Dahl, H, Meeraus, Alexander, and Zenios, Stavros A, Some Financial Optimization Models: Risk Management. In Zenios, Stavros A, Ed, Financial Optimization, Cambridge University Press, New York, NY, 1993. |
Sourceⓘ | GAMS Model Library model worst |
Applicationⓘ | Portfolio Optimization |
Added to libraryⓘ | 31 Jul 2001 |
Problem typeⓘ | NLP |
#Variablesⓘ | 34 |
#Binary Variablesⓘ | 0 |
#Integer Variablesⓘ | 0 |
#Nonlinear Variablesⓘ | 23 |
#Nonlinear Binary Variablesⓘ | 0 |
#Nonlinear Integer Variablesⓘ | 0 |
Objective Senseⓘ | min |
Objective typeⓘ | linear |
Objective curvatureⓘ | linear |
#Nonzeros in Objectiveⓘ | 13 |
#Nonlinear Nonzeros in Objectiveⓘ | 0 |
#Constraintsⓘ | 29 |
#Linear Constraintsⓘ | 8 |
#Quadratic Constraintsⓘ | 0 |
#Polynomial Constraintsⓘ | 0 |
#Signomial Constraintsⓘ | 0 |
#General Nonlinear Constraintsⓘ | 21 |
Operands in Gen. Nonlin. Functionsⓘ | div errorf exp log mul sqr |
Constraints curvatureⓘ | indefinite |
#Nonzeros in Jacobianⓘ | 98 |
#Nonlinear Nonzeros in Jacobianⓘ | 53 |
#Nonzeros in (Upper-Left) Hessian of Lagrangianⓘ | 79 |
#Nonzeros in Diagonal of Hessian of Lagrangianⓘ | 23 |
#Blocks in Hessian of Lagrangianⓘ | 3 |
Minimal blocksize in Hessian of Lagrangianⓘ | 1 |
Maximal blocksize in Hessian of Lagrangianⓘ | 11 |
Average blocksize in Hessian of Lagrangianⓘ | 7.666667 |
#Semicontinuitiesⓘ | 0 |
#Nonlinear Semicontinuitiesⓘ | 0 |
#SOS type 1ⓘ | 0 |
#SOS type 2ⓘ | 0 |
Minimal coefficientⓘ | 1.0101e-02 |
Maximal coefficientⓘ | 5.0000e+04 |
Infeasibility of initial pointⓘ | 1.766 |
Sparsity Jacobianⓘ | |
Sparsity Hessian of Lagrangianⓘ |
$offlisting * * Equation counts * Total E G L N X C B * 30 30 0 0 0 0 0 0 * * Variable counts * x b i s1s s2s sc si * Total cont binary integer sos1 sos2 scont sint * 35 35 0 0 0 0 0 0 * FX 0 * * Nonzero counts * Total const NL DLL * 112 59 53 0 * * Solve m using NLP minimizing objvar; Variables objvar,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 ,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35; Positive Variables x23,x24,x25,x26,x27,x28,x29,x30; Equations e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19 ,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e30; e1.. objvar - x18 - x19 - x20 - x21 - x22 + 30000*x23 - 25000*x24 + 30000*x25 + 50000*x26 - 25000*x27 - 5000*x28 - 15000*x29 - 50000*x30 =E= 20682900; e2.. -95.54*exp(0.09167*x31) + x18 =E= 0; e3.. -93.27*exp(0.33889*x32) + x19 =E= 0; e4.. -95.54*exp(0.09167*x31) + x20 =E= 0; e5.. -93.27*exp(0.33889*x32) + x21 =E= 0; e6.. -91.03*exp(0.58889*x33) + x22 =E= 0; e7.. -exp(-0.33889*x32)*(errorf(x2)*x21 - 95*errorf(x10)) + x23 =E= 0; e8.. -exp(-0.33889*x32)*(errorf(x3)*x21 - 97*errorf(x11)) + x25 =E= 0; e9.. -exp(-0.58889*x33)*(errorf(x6)*x22 - 95*errorf(x14)) + x24 =E= 0; e10.. -exp(-0.58889*x33)*(errorf(x7)*x22 - 97*errorf(x15)) + x26 =E= 0; e11.. -exp(-0.58889*x33)*(errorf(x8)*x22 - 99*errorf(x16)) + x27 =E= 0; e12.. -exp(-0.33889*x32)*(95*errorf(-x12) - errorf(-x4)*x21) + x28 =E= 0; e13.. -exp(-0.33889*x32)*(97*errorf(-x13) - errorf(-x5)*x21) + x29 =E= 0; e14.. -exp(-0.58889*x33)*(99*errorf(-x17) - errorf(-x9)*x22) + x30 =E= 0; e15.. -1.71779218689115*(log(0.0105263157894737*x21) + 0.169445*sqr(x34))/x34 + x2 =E= 0; e16.. -1.71779218689115*(log(0.0103092783505155*x21) + 0.169445*sqr(x34))/x34 + x3 =E= 0; e17.. -1.71779218689115*(log(0.0105263157894737*x21) + 0.169445*sqr(x34))/x34 + x4 =E= 0; e18.. -1.71779218689115*(log(0.0103092783505155*x21) + 0.169445*sqr(x34))/x34 + x5 =E= 0; e19.. -1.30311549893554*(log(0.0105263157894737*x22) + 0.294445*sqr(x35))/x35 + x6 =E= 0; e20.. -1.30311549893554*(log(0.0103092783505155*x22) + 0.294445*sqr(x35))/x35 + x7 =E= 0; e21.. -1.30311549893554*(log(0.0101010101010101*x22) + 0.294445*sqr(x35))/x35 + x8 =E= 0; e22.. -1.30311549893554*(log(0.0101010101010101*x22) + 0.294445*sqr(x35))/x35 + x9 =E= 0; e23.. - x2 + x10 + 0.582142594215541*x34 =E= 0; e24.. - x3 + x11 + 0.582142594215541*x34 =E= 0; e25.. - x4 + x12 + 0.582142594215541*x34 =E= 0; e26.. - x5 + x13 + 0.582142594215541*x34 =E= 0; e27.. - x6 + x14 + 0.767391686168152*x35 =E= 0; e28.. - x7 + x15 + 0.767391686168152*x35 =E= 0; e29.. - x8 + x16 + 0.767391686168152*x35 =E= 0; e30.. - x9 + x17 + 0.767391686168152*x35 =E= 0; * set non-default bounds x18.lo = 0.001; x19.lo = 0.001; x20.lo = 0.001; x21.lo = 0.001; x22.lo = 0.001; x31.lo = 0.05245; x31.up = 0.0857; x32.lo = 0.06175; x32.up = 0.095; x33.lo = 0.0619; x33.up = 0.0939; x34.lo = 0.0368; x34.up = 0.0768; x35.lo = 0.0368; x35.up = 0.0768; * set non-default levels x18.l = 96.1523975231246; x19.l = 95.8007796007676; x20.l = 96.1523975231246; x21.l = 95.8007796007676; x22.l = 95.303225278852; x31.l = 0.069075; x32.l = 0.078375; x33.l = 0.0779; x34.l = 0.0568; x35.l = 0.0568; Model m / all /; m.limrow=0; m.limcol=0; m.tolproj=0.0; $if NOT '%gams.u1%' == '' $include '%gams.u1%' $if not set NLP $set NLP NLP Solve m using %NLP% minimizing objvar;
Last updated: 2024-12-17 Git hash: 8eaceb91